ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg GIF version

Theorem opprsubgg 13961
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubgg (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))

Proof of Theorem opprsubgg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2208 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
2 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
3 eqid 2207 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbasg 13952 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 eqid 2207 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5oppraddg 13953 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqdr 5995 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
81, 4, 7grppropd 13464 . . . 4 (𝑅𝑉 → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp))
9 eqidd 2208 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑅s 𝑥)))
10 eqidd 2208 . . . . . . 7 (𝑅𝑉 → (𝑅s 𝑥) = (𝑅s 𝑥))
11 id 19 . . . . . . 7 (𝑅𝑉𝑅𝑉)
12 vex 2779 . . . . . . . 8 𝑥 ∈ V
1312a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
1410, 1, 11, 13ressbasd 13014 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
15 eqidd 2208 . . . . . . 7 (𝑅𝑉 → (𝑂s 𝑥) = (𝑂s 𝑥))
162opprex 13950 . . . . . . 7 (𝑅𝑉𝑂 ∈ V)
1715, 4, 16, 13ressbasd 13014 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1814, 17eqtr3d 2242 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥)))
19 eqidd 2208 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑅))
2010, 19, 13, 11ressplusgd 13076 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑅s 𝑥)))
2115, 6, 13, 16ressplusgd 13076 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑂s 𝑥)))
2220, 21eqtr3d 2242 . . . . . 6 (𝑅𝑉 → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
2322oveqdr 5995 . . . . 5 ((𝑅𝑉 ∧ (𝑧 ∈ (Base‘(𝑅s 𝑥)) ∧ 𝑤 ∈ (Base‘(𝑅s 𝑥)))) → (𝑧(+g‘(𝑅s 𝑥))𝑤) = (𝑧(+g‘(𝑂s 𝑥))𝑤))
249, 18, 23grppropd 13464 . . . 4 (𝑅𝑉 → ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp))
258, 243anbi13d 1327 . . 3 (𝑅𝑉 → ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
263issubg 13624 . . . 4 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp)))
28 eqid 2207 . . . . 5 (Base‘𝑂) = (Base‘𝑂)
2928issubg 13624 . . . 4 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp))
304sseq2d 3231 . . . . 5 (𝑅𝑉 → (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑂)))
31303anbi2d 1330 . . . 4 (𝑅𝑉 → ((𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp)))
3229, 31bitr4id 199 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
3325, 27, 323bitr4d 220 . 2 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
3433eqrdv 2205 1 (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  Vcvv 2776  cin 3173  wss 3174  cfv 5290  (class class class)co 5967  Basecbs 12947  s cress 12948  +gcplusg 13024  Grpcgrp 13447  SubGrpcsubg 13618  opprcoppr 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-subg 13621  df-oppr 13945
This theorem is referenced by:  opprsubrngg  14088  isridlrng  14359  isridl  14381
  Copyright terms: Public domain W3C validator