ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg GIF version

Theorem opprsubgg 13846
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubgg (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))

Proof of Theorem opprsubgg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2206 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
2 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
3 eqid 2205 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbasg 13837 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 eqid 2205 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5oppraddg 13838 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqdr 5972 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
81, 4, 7grppropd 13349 . . . 4 (𝑅𝑉 → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp))
9 eqidd 2206 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑅s 𝑥)))
10 eqidd 2206 . . . . . . 7 (𝑅𝑉 → (𝑅s 𝑥) = (𝑅s 𝑥))
11 id 19 . . . . . . 7 (𝑅𝑉𝑅𝑉)
12 vex 2775 . . . . . . . 8 𝑥 ∈ V
1312a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
1410, 1, 11, 13ressbasd 12899 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
15 eqidd 2206 . . . . . . 7 (𝑅𝑉 → (𝑂s 𝑥) = (𝑂s 𝑥))
162opprex 13835 . . . . . . 7 (𝑅𝑉𝑂 ∈ V)
1715, 4, 16, 13ressbasd 12899 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1814, 17eqtr3d 2240 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥)))
19 eqidd 2206 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑅))
2010, 19, 13, 11ressplusgd 12961 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑅s 𝑥)))
2115, 6, 13, 16ressplusgd 12961 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑂s 𝑥)))
2220, 21eqtr3d 2240 . . . . . 6 (𝑅𝑉 → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
2322oveqdr 5972 . . . . 5 ((𝑅𝑉 ∧ (𝑧 ∈ (Base‘(𝑅s 𝑥)) ∧ 𝑤 ∈ (Base‘(𝑅s 𝑥)))) → (𝑧(+g‘(𝑅s 𝑥))𝑤) = (𝑧(+g‘(𝑂s 𝑥))𝑤))
249, 18, 23grppropd 13349 . . . 4 (𝑅𝑉 → ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp))
258, 243anbi13d 1327 . . 3 (𝑅𝑉 → ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
263issubg 13509 . . . 4 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp)))
28 eqid 2205 . . . . 5 (Base‘𝑂) = (Base‘𝑂)
2928issubg 13509 . . . 4 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp))
304sseq2d 3223 . . . . 5 (𝑅𝑉 → (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑂)))
31303anbi2d 1330 . . . 4 (𝑅𝑉 → ((𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp)))
3229, 31bitr4id 199 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
3325, 27, 323bitr4d 220 . 2 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
3433eqrdv 2203 1 (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  wss 3166  cfv 5271  (class class class)co 5944  Basecbs 12832  s cress 12833  +gcplusg 12909  Grpcgrp 13332  SubGrpcsubg 13503  opprcoppr 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-subg 13506  df-oppr 13830
This theorem is referenced by:  opprsubrngg  13973  isridlrng  14244  isridl  14266
  Copyright terms: Public domain W3C validator