| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑅)) |
| 2 | | opprbas.1 |
. . . . . 6
⊢ 𝑂 =
(oppr‘𝑅) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 4 | 2, 3 | opprbasg 13631 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
| 5 | | eqid 2196 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 6 | 2, 5 | oppraddg 13632 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
| 7 | 6 | oveqdr 5950 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 8 | 1, 4, 7 | grppropd 13149 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)) |
| 9 | | eqidd 2197 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑅 ↾s 𝑥))) |
| 10 | | eqidd 2197 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾s 𝑥) = (𝑅 ↾s 𝑥)) |
| 11 | | id 19 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ 𝑉) |
| 12 | | vex 2766 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 13 | 12 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑥 ∈ V) |
| 14 | 10, 1, 11, 13 | ressbasd 12745 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥))) |
| 15 | | eqidd 2197 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝑂 ↾s 𝑥) = (𝑂 ↾s 𝑥)) |
| 16 | 2 | opprex 13629 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| 17 | 15, 4, 16, 13 | ressbasd 12745 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥))) |
| 18 | 14, 17 | eqtr3d 2231 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑂 ↾s 𝑥))) |
| 19 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑅)) |
| 20 | 10, 19, 13, 11 | ressplusgd 12806 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑥))) |
| 21 | 15, 6, 13, 16 | ressplusgd 12806 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘(𝑂 ↾s 𝑥))) |
| 22 | 20, 21 | eqtr3d 2231 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥))) |
| 23 | 22 | oveqdr 5950 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑧 ∈ (Base‘(𝑅 ↾s 𝑥)) ∧ 𝑤 ∈ (Base‘(𝑅 ↾s 𝑥)))) → (𝑧(+g‘(𝑅 ↾s 𝑥))𝑤) = (𝑧(+g‘(𝑂 ↾s 𝑥))𝑤)) |
| 24 | 9, 18, 23 | grppropd 13149 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ((𝑅 ↾s 𝑥) ∈ Grp ↔ (𝑂 ↾s 𝑥) ∈ Grp)) |
| 25 | 8, 24 | 3anbi13d 1325 |
. . 3
⊢ (𝑅 ∈ 𝑉 → ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp))) |
| 26 | 3 | issubg 13303 |
. . . 4
⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp)) |
| 27 | 26 | a1i 9 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp))) |
| 28 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝑂) =
(Base‘𝑂) |
| 29 | 28 | issubg 13303 |
. . . 4
⊢ (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
| 30 | 4 | sseq2d 3213 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑂))) |
| 31 | 30 | 3anbi2d 1328 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ((𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂 ↾s 𝑥) ∈ Grp))) |
| 32 | 29, 31 | bitr4id 199 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp))) |
| 33 | 25, 27, 32 | 3bitr4d 220 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
| 34 | 33 | eqrdv 2194 |
1
⊢ (𝑅 ∈ 𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |