ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg GIF version

Theorem opprsubgg 13716
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubgg (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))

Proof of Theorem opprsubgg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
2 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
3 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbasg 13707 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 eqid 2196 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5oppraddg 13708 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqdr 5953 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
81, 4, 7grppropd 13219 . . . 4 (𝑅𝑉 → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp))
9 eqidd 2197 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑅s 𝑥)))
10 eqidd 2197 . . . . . . 7 (𝑅𝑉 → (𝑅s 𝑥) = (𝑅s 𝑥))
11 id 19 . . . . . . 7 (𝑅𝑉𝑅𝑉)
12 vex 2766 . . . . . . . 8 𝑥 ∈ V
1312a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
1410, 1, 11, 13ressbasd 12770 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
15 eqidd 2197 . . . . . . 7 (𝑅𝑉 → (𝑂s 𝑥) = (𝑂s 𝑥))
162opprex 13705 . . . . . . 7 (𝑅𝑉𝑂 ∈ V)
1715, 4, 16, 13ressbasd 12770 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1814, 17eqtr3d 2231 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥)))
19 eqidd 2197 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑅))
2010, 19, 13, 11ressplusgd 12831 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑅s 𝑥)))
2115, 6, 13, 16ressplusgd 12831 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑂s 𝑥)))
2220, 21eqtr3d 2231 . . . . . 6 (𝑅𝑉 → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
2322oveqdr 5953 . . . . 5 ((𝑅𝑉 ∧ (𝑧 ∈ (Base‘(𝑅s 𝑥)) ∧ 𝑤 ∈ (Base‘(𝑅s 𝑥)))) → (𝑧(+g‘(𝑅s 𝑥))𝑤) = (𝑧(+g‘(𝑂s 𝑥))𝑤))
249, 18, 23grppropd 13219 . . . 4 (𝑅𝑉 → ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp))
258, 243anbi13d 1325 . . 3 (𝑅𝑉 → ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
263issubg 13379 . . . 4 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp)))
28 eqid 2196 . . . . 5 (Base‘𝑂) = (Base‘𝑂)
2928issubg 13379 . . . 4 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp))
304sseq2d 3214 . . . . 5 (𝑅𝑉 → (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑂)))
31303anbi2d 1328 . . . 4 (𝑅𝑉 → ((𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp)))
3229, 31bitr4id 199 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
3325, 27, 323bitr4d 220 . 2 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
3433eqrdv 2194 1 (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  +gcplusg 12780  Grpcgrp 13202  SubGrpcsubg 13373  opprcoppr 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-subg 13376  df-oppr 13700
This theorem is referenced by:  opprsubrngg  13843  isridlrng  14114  isridl  14136
  Copyright terms: Public domain W3C validator