Step | Hyp | Ref
| Expression |
1 | | eqidd 2190 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑅)) |
2 | | opprbas.1 |
. . . . . 6
⊢ 𝑂 =
(oppr‘𝑅) |
3 | | eqid 2189 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | 2, 3 | opprbasg 13422 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
5 | | eqid 2189 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
6 | 2, 5 | oppraddg 13423 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
7 | 6 | oveqdr 5923 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
8 | 1, 4, 7 | grppropd 12959 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)) |
9 | | eqidd 2190 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑅 ↾s 𝑥))) |
10 | | eqidd 2190 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾s 𝑥) = (𝑅 ↾s 𝑥)) |
11 | | id 19 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ 𝑉) |
12 | | vex 2755 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
13 | 12 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑥 ∈ V) |
14 | 10, 1, 11, 13 | ressbasd 12576 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝑥))) |
15 | | eqidd 2190 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝑂 ↾s 𝑥) = (𝑂 ↾s 𝑥)) |
16 | 2 | opprex 13420 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
17 | 15, 4, 16, 13 | ressbasd 12576 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂 ↾s 𝑥))) |
18 | 14, 17 | eqtr3d 2224 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘(𝑅 ↾s 𝑥)) = (Base‘(𝑂 ↾s 𝑥))) |
19 | | eqidd 2190 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑅)) |
20 | 10, 19, 13, 11 | ressplusgd 12637 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑥))) |
21 | 15, 6, 13, 16 | ressplusgd 12637 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘(𝑂 ↾s 𝑥))) |
22 | 20, 21 | eqtr3d 2224 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘(𝑅 ↾s 𝑥)) = (+g‘(𝑂 ↾s 𝑥))) |
23 | 22 | oveqdr 5923 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑧 ∈ (Base‘(𝑅 ↾s 𝑥)) ∧ 𝑤 ∈ (Base‘(𝑅 ↾s 𝑥)))) → (𝑧(+g‘(𝑅 ↾s 𝑥))𝑤) = (𝑧(+g‘(𝑂 ↾s 𝑥))𝑤)) |
24 | 9, 18, 23 | grppropd 12959 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ((𝑅 ↾s 𝑥) ∈ Grp ↔ (𝑂 ↾s 𝑥) ∈ Grp)) |
25 | 8, 24 | 3anbi13d 1325 |
. . 3
⊢ (𝑅 ∈ 𝑉 → ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp))) |
26 | 3 | issubg 13109 |
. . . 4
⊢ (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp)) |
27 | 26 | a1i 9 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝑥) ∈ Grp))) |
28 | | eqid 2189 |
. . . . 5
⊢
(Base‘𝑂) =
(Base‘𝑂) |
29 | 28 | issubg 13109 |
. . . 4
⊢ (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂 ↾s 𝑥) ∈ Grp)) |
30 | 4 | sseq2d 3200 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑂))) |
31 | 30 | 3anbi2d 1328 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ((𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂 ↾s 𝑥) ∈ Grp))) |
32 | 29, 31 | bitr4id 199 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂 ↾s 𝑥) ∈ Grp))) |
33 | 25, 27, 32 | 3bitr4d 220 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
34 | 33 | eqrdv 2187 |
1
⊢ (𝑅 ∈ 𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |