ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg GIF version

Theorem opprsubgg 13879
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubgg (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))

Proof of Theorem opprsubgg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2206 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
2 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
3 eqid 2205 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbasg 13870 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 eqid 2205 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5oppraddg 13871 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqdr 5974 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
81, 4, 7grppropd 13382 . . . 4 (𝑅𝑉 → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp))
9 eqidd 2206 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑅s 𝑥)))
10 eqidd 2206 . . . . . . 7 (𝑅𝑉 → (𝑅s 𝑥) = (𝑅s 𝑥))
11 id 19 . . . . . . 7 (𝑅𝑉𝑅𝑉)
12 vex 2775 . . . . . . . 8 𝑥 ∈ V
1312a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
1410, 1, 11, 13ressbasd 12932 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
15 eqidd 2206 . . . . . . 7 (𝑅𝑉 → (𝑂s 𝑥) = (𝑂s 𝑥))
162opprex 13868 . . . . . . 7 (𝑅𝑉𝑂 ∈ V)
1715, 4, 16, 13ressbasd 12932 . . . . . 6 (𝑅𝑉 → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
1814, 17eqtr3d 2240 . . . . 5 (𝑅𝑉 → (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥)))
19 eqidd 2206 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑅))
2010, 19, 13, 11ressplusgd 12994 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑅s 𝑥)))
2115, 6, 13, 16ressplusgd 12994 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g‘(𝑂s 𝑥)))
2220, 21eqtr3d 2240 . . . . . 6 (𝑅𝑉 → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
2322oveqdr 5974 . . . . 5 ((𝑅𝑉 ∧ (𝑧 ∈ (Base‘(𝑅s 𝑥)) ∧ 𝑤 ∈ (Base‘(𝑅s 𝑥)))) → (𝑧(+g‘(𝑅s 𝑥))𝑤) = (𝑧(+g‘(𝑂s 𝑥))𝑤))
249, 18, 23grppropd 13382 . . . 4 (𝑅𝑉 → ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp))
258, 243anbi13d 1327 . . 3 (𝑅𝑉 → ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
263issubg 13542 . . . 4 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp)))
28 eqid 2205 . . . . 5 (Base‘𝑂) = (Base‘𝑂)
2928issubg 13542 . . . 4 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp))
304sseq2d 3223 . . . . 5 (𝑅𝑉 → (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑂)))
31303anbi2d 1330 . . . 4 (𝑅𝑉 → ((𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑂) ∧ (𝑂s 𝑥) ∈ Grp)))
3229, 31bitr4id 199 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp)))
3325, 27, 323bitr4d 220 . 2 (𝑅𝑉 → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
3433eqrdv 2203 1 (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  wss 3166  cfv 5272  (class class class)co 5946  Basecbs 12865  s cress 12866  +gcplusg 12942  Grpcgrp 13365  SubGrpcsubg 13536  opprcoppr 13862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-tpos 6333  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-subg 13539  df-oppr 13863
This theorem is referenced by:  opprsubrngg  14006  isridlrng  14277  isridl  14299
  Copyright terms: Public domain W3C validator