ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxwrdsymbg Unicode version

Theorem pfxwrdsymbg 11181
Description: A prefix of a word is a word over the symbols it consists of. (Contributed by AV, 3-Dec-2022.)
Assertion
Ref Expression
pfxwrdsymbg  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  -> 
( S prefix  L )  e. Word  ( S " (
0..^ L ) ) )

Proof of Theorem pfxwrdsymbg
StepHypRef Expression
1 pfxval 11165 . 2  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  -> 
( S prefix  L )  =  ( S substr  <. 0 ,  L >. ) )
2 simpll 527 . . . 4  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  ->  S  e. Word  A )
3 simplr 528 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  ->  L  e.  NN0 )
4 elnn0uz 9721 . . . . . 6  |-  ( L  e.  NN0  <->  L  e.  ( ZZ>=
`  0 ) )
53, 4sylib 122 . . . . 5  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  ->  L  e.  ( ZZ>= ` 
0 ) )
6 eluzfz1 10188 . . . . 5  |-  ( L  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... L
) )
75, 6syl 14 . . . 4  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  -> 
0  e.  ( 0 ... L ) )
8 simpr 110 . . . . 5  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  ->  L  <_  ( `  S )
)
9 lencl 11035 . . . . . . . 8  |-  ( S  e. Word  A  ->  ( `  S )  e.  NN0 )
109nn0zd 9528 . . . . . . 7  |-  ( S  e. Word  A  ->  ( `  S )  e.  ZZ )
112, 10syl 14 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  -> 
( `  S )  e.  ZZ )
12 elfz5 10174 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
0 )  /\  ( `  S )  e.  ZZ )  ->  ( L  e.  ( 0 ... ( `  S ) )  <->  L  <_  ( `  S ) ) )
135, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  -> 
( L  e.  ( 0 ... ( `  S
) )  <->  L  <_  ( `  S ) ) )
148, 13mpbird 167 . . . 4  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  ->  L  e.  ( 0 ... ( `  S
) ) )
15 swrdwrdsymbg 11155 . . . 4  |-  ( ( S  e. Word  A  /\  0  e.  ( 0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  -> 
( S substr  <. 0 ,  L >. )  e. Word  ( S " ( 0..^ L ) ) )
162, 7, 14, 15syl3anc 1250 . . 3  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  L  <_  ( `  S ) )  -> 
( S substr  <. 0 ,  L >. )  e. Word  ( S " ( 0..^ L ) ) )
17 3mix3 1171 . . . . . 6  |-  ( ( `  S )  <  L  ->  ( 0  <  0  \/  L  <_  0  \/  ( `  S )  <  L ) )
1817adantl 277 . . . . 5  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  ( 0  <  0  \/  L  <_  0  \/  ( `  S )  <  L ) )
19 simpll 527 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  S  e. Word  A )
20 0zd 9419 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  0  e.  ZZ )
21 nn0z 9427 . . . . . . . 8  |-  ( L  e.  NN0  ->  L  e.  ZZ )
2221adantl 277 . . . . . . 7  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  ->  L  e.  ZZ )
2322adantr 276 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  L  e.  ZZ )
24 swrdnd 11150 . . . . . 6  |-  ( ( S  e. Word  A  /\  0  e.  ZZ  /\  L  e.  ZZ )  ->  (
( 0  <  0  \/  L  <_  0  \/  ( `  S )  <  L )  ->  ( S substr  <. 0 ,  L >. )  =  (/) ) )
2519, 20, 23, 24syl3anc 1250 . . . . 5  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  ( ( 0  <  0  \/  L  <_ 
0  \/  ( `  S
)  <  L )  ->  ( S substr  <. 0 ,  L >. )  =  (/) ) )
2618, 25mpd 13 . . . 4  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  ( S substr  <. 0 ,  L >. )  =  (/) )
27 wrd0 11056 . . . 4  |-  (/)  e. Word  ( S " ( 0..^ L ) )
2826, 27eqeltrdi 2298 . . 3  |-  ( ( ( S  e. Word  A  /\  L  e.  NN0 )  /\  ( `  S
)  <  L )  ->  ( S substr  <. 0 ,  L >. )  e. Word  ( S " ( 0..^ L ) ) )
2910adantr 276 . . . 4  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  -> 
( `  S )  e.  ZZ )
30 zlelttric 9452 . . . 4  |-  ( ( L  e.  ZZ  /\  ( `  S )  e.  ZZ )  ->  ( L  <_  ( `  S )  \/  ( `  S )  <  L ) )
3122, 29, 30syl2anc 411 . . 3  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  -> 
( L  <_  ( `  S )  \/  ( `  S )  <  L
) )
3216, 28, 31mpjaodan 800 . 2  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  -> 
( S substr  <. 0 ,  L >. )  e. Word  ( S " ( 0..^ L ) ) )
331, 32eqeltrd 2284 1  |-  ( ( S  e. Word  A  /\  L  e.  NN0 )  -> 
( S prefix  L )  e. Word  ( S " (
0..^ L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2178   (/)c0 3468   <.cop 3646   class class class wbr 4059   "cima 4696   ` cfv 5290  (class class class)co 5967   0cc0 7960    < clt 8142    <_ cle 8143   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165  ..^cfzo 10299  ♯chash 10957  Word cword 11031   substr csubstr 11136   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-substr 11137  df-pfx 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator