ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusghm GIF version

Theorem qusghm 13412
Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x 𝑋 = (Base‘𝐺)
qusghm.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qusghm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qusghm (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2196 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2196 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2196 . 2 (+g𝐻) = (+g𝐻)
5 nsgsubg 13335 . . 3 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
6 subgrcl 13309 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
75, 6syl 14 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
8 qusghm.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
98qusgrp 13362 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
108, 1, 2quseccl 13363 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻))
11 qusghm.f . . 3 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
1210, 11fmptd 5716 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻))
138, 1, 3, 4qusadd 13364 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
14133expb 1206 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
15 eceq1 6627 . . . . 5 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
16 simprl 529 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
17 eqgex 13351 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → (𝐺 ~QG 𝑌) ∈ V)
187, 17mpancom 422 . . . . . . 7 (𝑌 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑌) ∈ V)
1918adantr 276 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐺 ~QG 𝑌) ∈ V)
20 ecexg 6596 . . . . . 6 ((𝐺 ~QG 𝑌) ∈ V → [𝑦](𝐺 ~QG 𝑌) ∈ V)
2119, 20syl 14 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → [𝑦](𝐺 ~QG 𝑌) ∈ V)
2211, 15, 16, 21fvmptd3 5655 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
23 eceq1 6627 . . . . 5 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
24 simprr 531 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
25 ecexg 6596 . . . . . 6 ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V)
2619, 25syl 14 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → [𝑧](𝐺 ~QG 𝑌) ∈ V)
2711, 23, 24, 26fvmptd3 5655 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2822, 27oveq12d 5940 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(+g𝐻)(𝐹𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)))
29 eceq1 6627 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
301, 3grpcl 13140 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
31303expb 1206 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
327, 31sylan 283 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
33 ecexg 6596 . . . . 5 ((𝐺 ~QG 𝑌) ∈ V → [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌) ∈ V)
3419, 33syl 14 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌) ∈ V)
3511, 29, 32, 34fvmptd3 5655 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3614, 28, 353eqtr4rd 2240 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = ((𝐹𝑦)(+g𝐻)(𝐹𝑧)))
371, 2, 3, 4, 7, 9, 12, 36isghmd 13382 1 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cmpt 4094  cfv 5258  (class class class)co 5922  [cec 6590  Basecbs 12678  +gcplusg 12755   /s cqus 12943  Grpcgrp 13132  SubGrpcsubg 13297  NrmSGrpcnsg 13298   ~QG cqg 13299   GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-nsg 13301  df-eqg 13302  df-ghm 13371
This theorem is referenced by:  qusrhm  14084
  Copyright terms: Public domain W3C validator