| Step | Hyp | Ref
| Expression |
| 1 | | qusghm.x |
. 2
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | eqid 2196 |
. 2
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 3 | | eqid 2196 |
. 2
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 4 | | eqid 2196 |
. 2
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 5 | | nsgsubg 13335 |
. . 3
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) |
| 6 | | subgrcl 13309 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 7 | 5, 6 | syl 14 |
. 2
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 8 | | qusghm.h |
. . 3
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
| 9 | 8 | qusgrp 13362 |
. 2
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
| 10 | 8, 1, 2 | quseccl 13363 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻)) |
| 11 | | qusghm.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) |
| 12 | 10, 11 | fmptd 5716 |
. 2
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 13 | 8, 1, 3, 4 | qusadd 13364 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 14 | 13 | 3expb 1206 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 15 | | eceq1 6627 |
. . . . 5
⊢ (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)) |
| 16 | | simprl 529 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 17 | | eqgex 13351 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → (𝐺 ~QG 𝑌) ∈ V) |
| 18 | 7, 17 | mpancom 422 |
. . . . . . 7
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑌) ∈ V) |
| 19 | 18 | adantr 276 |
. . . . . 6
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐺 ~QG 𝑌) ∈ V) |
| 20 | | ecexg 6596 |
. . . . . 6
⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑦](𝐺 ~QG 𝑌) ∈ V) |
| 21 | 19, 20 | syl 14 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → [𝑦](𝐺 ~QG 𝑌) ∈ V) |
| 22 | 11, 15, 16, 21 | fvmptd3 5655 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
| 23 | | eceq1 6627 |
. . . . 5
⊢ (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) |
| 24 | | simprr 531 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 25 | | ecexg 6596 |
. . . . . 6
⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V) |
| 26 | 19, 25 | syl 14 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → [𝑧](𝐺 ~QG 𝑌) ∈ V) |
| 27 | 11, 23, 24, 26 | fvmptd3 5655 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
| 28 | 22, 27 | oveq12d 5940 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌))) |
| 29 | | eceq1 6627 |
. . . 4
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 30 | 1, 3 | grpcl 13140 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
| 31 | 30 | 3expb 1206 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
| 32 | 7, 31 | sylan 283 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
| 33 | | ecexg 6596 |
. . . . 5
⊢ ((𝐺 ~QG 𝑌) ∈ V → [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌) ∈ V) |
| 34 | 19, 33 | syl 14 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌) ∈ V) |
| 35 | 11, 29, 32, 34 | fvmptd3 5655 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 36 | 14, 28, 35 | 3eqtr4rd 2240 |
. 2
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧))) |
| 37 | 1, 2, 3, 4, 7, 9, 12, 36 | isghmd 13382 |
1
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |