Step | Hyp | Ref
| Expression |
1 | | qusghm.x |
. 2
⊢ 𝑋 = (Base‘𝐺) |
2 | | eqid 2189 |
. 2
⊢
(Base‘𝐻) =
(Base‘𝐻) |
3 | | eqid 2189 |
. 2
⊢
(+g‘𝐺) = (+g‘𝐺) |
4 | | eqid 2189 |
. 2
⊢
(+g‘𝐻) = (+g‘𝐻) |
5 | | nsgsubg 13161 |
. . 3
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) |
6 | | subgrcl 13135 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
7 | 5, 6 | syl 14 |
. 2
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
8 | | qusghm.h |
. . 3
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
9 | 8 | qusgrp 13188 |
. 2
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
10 | 8, 1, 2 | quseccl 13189 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻)) |
11 | | qusghm.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) |
12 | 10, 11 | fmptd 5691 |
. 2
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻)) |
13 | 8, 1, 3, 4 | qusadd 13190 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
14 | 13 | 3expb 1206 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
15 | | eceq1 6595 |
. . . . 5
⊢ (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)) |
16 | | simprl 529 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
17 | | eqgex 13177 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → (𝐺 ~QG 𝑌) ∈ V) |
18 | 7, 17 | mpancom 422 |
. . . . . . 7
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑌) ∈ V) |
19 | 18 | adantr 276 |
. . . . . 6
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐺 ~QG 𝑌) ∈ V) |
20 | | ecexg 6564 |
. . . . . 6
⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑦](𝐺 ~QG 𝑌) ∈ V) |
21 | 19, 20 | syl 14 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → [𝑦](𝐺 ~QG 𝑌) ∈ V) |
22 | 11, 15, 16, 21 | fvmptd3 5630 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
23 | | eceq1 6595 |
. . . . 5
⊢ (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) |
24 | | simprr 531 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
25 | | ecexg 6564 |
. . . . . 6
⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V) |
26 | 19, 25 | syl 14 |
. . . . 5
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → [𝑧](𝐺 ~QG 𝑌) ∈ V) |
27 | 11, 23, 24, 26 | fvmptd3 5630 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
28 | 22, 27 | oveq12d 5915 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌))) |
29 | | eceq1 6595 |
. . . 4
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
30 | 1, 3 | grpcl 12968 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
31 | 30 | 3expb 1206 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
32 | 7, 31 | sylan 283 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
33 | | ecexg 6564 |
. . . . 5
⊢ ((𝐺 ~QG 𝑌) ∈ V → [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌) ∈ V) |
34 | 19, 33 | syl 14 |
. . . 4
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌) ∈ V) |
35 | 11, 29, 32, 34 | fvmptd3 5630 |
. . 3
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
36 | 14, 28, 35 | 3eqtr4rd 2233 |
. 2
⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧))) |
37 | 1, 2, 3, 4, 7, 9, 12, 36 | isghmd 13208 |
1
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |