Step | Hyp | Ref
| Expression |
1 | | eqid 2189 |
. 2
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) |
2 | | eqid 2189 |
. 2
⊢
(1r‘(oppr‘𝑅)) =
(1r‘(oppr‘𝑅)) |
3 | | eqid 2189 |
. 2
⊢
(1r‘(oppr‘𝑆)) =
(1r‘(oppr‘𝑆)) |
4 | | eqid 2189 |
. 2
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
5 | | eqid 2189 |
. 2
⊢
(.r‘(oppr‘𝑆)) =
(.r‘(oppr‘𝑆)) |
6 | | rhmrcl1 13522 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
7 | | eqid 2189 |
. . . . 5
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
8 | 7 | opprringbg 13447 |
. . . 4
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Ring ↔
(oppr‘𝑅) ∈ Ring)) |
9 | 6, 8 | syl 14 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ↔
(oppr‘𝑅) ∈ Ring)) |
10 | 6, 9 | mpbid 147 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑅) ∈ Ring) |
11 | | rhmrcl2 13523 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
12 | | eqid 2189 |
. . . . 5
⊢
(oppr‘𝑆) = (oppr‘𝑆) |
13 | 12 | opprringbg 13447 |
. . . 4
⊢ (𝑆 ∈ Ring → (𝑆 ∈ Ring ↔
(oppr‘𝑆) ∈ Ring)) |
14 | 11, 13 | syl 14 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ↔
(oppr‘𝑆) ∈ Ring)) |
15 | 11, 14 | mpbid 147 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑆) ∈ Ring) |
16 | | eqid 2189 |
. . . 4
⊢
(1r‘𝑅) = (1r‘𝑅) |
17 | | eqid 2189 |
. . . 4
⊢
(1r‘𝑆) = (1r‘𝑆) |
18 | 16, 17 | rhm1 13534 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
19 | 7, 16 | oppr1g 13449 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅) =
(1r‘(oppr‘𝑅))) |
20 | 6, 19 | syl 14 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘𝑅) =
(1r‘(oppr‘𝑅))) |
21 | 20 | eqcomd 2195 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) →
(1r‘(oppr‘𝑅)) = (1r‘𝑅)) |
22 | 21 | fveq2d 5538 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr‘𝑅))) = (𝐹‘(1r‘𝑅))) |
23 | 12, 17 | oppr1g 13449 |
. . . . 5
⊢ (𝑆 ∈ Ring →
(1r‘𝑆) =
(1r‘(oppr‘𝑆))) |
24 | 11, 23 | syl 14 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘𝑆) =
(1r‘(oppr‘𝑆))) |
25 | 24 | eqcomd 2195 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) →
(1r‘(oppr‘𝑆)) = (1r‘𝑆)) |
26 | 18, 22, 25 | 3eqtr4d 2232 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr‘𝑅))) =
(1r‘(oppr‘𝑆))) |
27 | | simpl 109 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
28 | | simprr 531 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑦 ∈
(Base‘(oppr‘𝑅))) |
29 | | eqid 2189 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
30 | 7, 29 | opprbasg 13442 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
31 | 6, 30 | syl 14 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
32 | 27, 31 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
33 | 28, 32 | eleqtrrd 2269 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑦 ∈ (Base‘𝑅)) |
34 | | simprl 529 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑥 ∈
(Base‘(oppr‘𝑅))) |
35 | 34, 32 | eleqtrrd 2269 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑥 ∈ (Base‘𝑅)) |
36 | | eqid 2189 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
37 | | eqid 2189 |
. . . . 5
⊢
(.r‘𝑆) = (.r‘𝑆) |
38 | 29, 36, 37 | rhmmul 13531 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r‘𝑅)𝑥)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥))) |
39 | 27, 33, 35, 38 | syl3anc 1249 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘(𝑦(.r‘𝑅)𝑥)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥))) |
40 | 27, 6 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑅 ∈ Ring) |
41 | 29, 36, 7, 4 | opprmulg 13438 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅))) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦(.r‘𝑅)𝑥)) |
42 | 40, 34, 28, 41 | syl3anc 1249 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦(.r‘𝑅)𝑥)) |
43 | 42 | fveq2d 5538 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘(𝑥(.r‘(oppr‘𝑅))𝑦)) = (𝐹‘(𝑦(.r‘𝑅)𝑥))) |
44 | 27, 11 | syl 14 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑆 ∈ Ring) |
45 | | eqid 2189 |
. . . . . . 7
⊢
(Base‘𝑆) =
(Base‘𝑆) |
46 | 29, 45 | rhmf 13530 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
47 | 27, 46 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
48 | 47, 35 | ffvelcdmd 5673 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘𝑥) ∈ (Base‘𝑆)) |
49 | 47, 33 | ffvelcdmd 5673 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘𝑦) ∈ (Base‘𝑆)) |
50 | 45, 37, 12, 5 | opprmulg 13438 |
. . . 4
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ (Base‘𝑆)) → ((𝐹‘𝑥)(.r‘(oppr‘𝑆))(𝐹‘𝑦)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥))) |
51 | 44, 48, 49, 50 | syl3anc 1249 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → ((𝐹‘𝑥)(.r‘(oppr‘𝑆))(𝐹‘𝑦)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥))) |
52 | 39, 43, 51 | 3eqtr4d 2232 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘(𝑥(.r‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(.r‘(oppr‘𝑆))(𝐹‘𝑦))) |
53 | 10 | ringgrpd 13376 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑅) ∈ Grp) |
54 | 15 | ringgrpd 13376 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑆) ∈ Grp) |
55 | | rhmghm 13529 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
56 | 55 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
57 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
58 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) |
59 | | eqid 2189 |
. . . . . . . . . 10
⊢
(+g‘𝑅) = (+g‘𝑅) |
60 | | eqid 2189 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
61 | 29, 59, 60 | ghmlin 13204 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
62 | 56, 57, 58, 61 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
63 | 62 | ralrimiva 2563 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
64 | 63 | ralrimiva 2563 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
65 | 46, 64 | jca 306 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) |
66 | 53, 54, 65 | jca31 309 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) →
(((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
67 | 12, 45 | opprbasg 13442 |
. . . . . . . 8
⊢ (𝑆 ∈ Ring →
(Base‘𝑆) =
(Base‘(oppr‘𝑆))) |
68 | 11, 67 | syl 14 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (Base‘𝑆) =
(Base‘(oppr‘𝑆))) |
69 | 31, 68 | feq23d 5380 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ↔ 𝐹:(Base‘(oppr‘𝑅))⟶(Base‘(oppr‘𝑆)))) |
70 | 7, 59 | oppraddg 13443 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘(oppr‘𝑅))) |
71 | 6, 70 | syl 14 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (+g‘𝑅) =
(+g‘(oppr‘𝑅))) |
72 | 71 | oveqd 5914 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
73 | 72 | fveq2d 5538 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(𝑥(+g‘𝑅)𝑦)) = (𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦))) |
74 | 12, 60 | oppraddg 13443 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Ring →
(+g‘𝑆) =
(+g‘(oppr‘𝑆))) |
75 | 11, 74 | syl 14 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (+g‘𝑆) =
(+g‘(oppr‘𝑆))) |
76 | 75 | oveqd 5914 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦))) |
77 | 73, 76 | eqeq12d 2204 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ↔ (𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦)))) |
78 | 31, 77 | raleqbidv 2698 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ↔ ∀𝑦 ∈
(Base‘(oppr‘𝑅))(𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦)))) |
79 | 31, 78 | raleqbidv 2698 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ↔ ∀𝑥 ∈
(Base‘(oppr‘𝑅))∀𝑦 ∈
(Base‘(oppr‘𝑅))(𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦)))) |
80 | 69, 79 | anbi12d 473 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ↔ (𝐹:(Base‘(oppr‘𝑅))⟶(Base‘(oppr‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ (Base‘(oppr‘𝑅))(𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦))))) |
81 | 80 | anbi2d 464 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) →
((((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) ↔
(((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr‘𝑅))⟶(Base‘(oppr‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ (Base‘(oppr‘𝑅))(𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦)))))) |
82 | 66, 81 | mpbid 147 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) →
(((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr‘𝑅))⟶(Base‘(oppr‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ (Base‘(oppr‘𝑅))(𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦))))) |
83 | | eqid 2189 |
. . . 4
⊢
(Base‘(oppr‘𝑆)) =
(Base‘(oppr‘𝑆)) |
84 | | eqid 2189 |
. . . 4
⊢
(+g‘(oppr‘𝑅)) =
(+g‘(oppr‘𝑅)) |
85 | | eqid 2189 |
. . . 4
⊢
(+g‘(oppr‘𝑆)) =
(+g‘(oppr‘𝑆)) |
86 | 1, 83, 84, 85 | isghm 13199 |
. . 3
⊢ (𝐹 ∈
((oppr‘𝑅) GrpHom (oppr‘𝑆)) ↔
(((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr‘𝑅))⟶(Base‘(oppr‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ (Base‘(oppr‘𝑅))(𝐹‘(𝑥(+g‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(oppr‘𝑆))(𝐹‘𝑦))))) |
87 | 82, 86 | sylibr 134 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) GrpHom
(oppr‘𝑆))) |
88 | 1, 2, 3, 4, 5, 10,
15, 26, 52, 87 | isrhm2d 13532 |
1
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) |