ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmopp GIF version

Theorem rhmopp 14148
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))

Proof of Theorem rhmopp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
2 eqid 2229 . 2 (1r‘(oppr𝑅)) = (1r‘(oppr𝑅))
3 eqid 2229 . 2 (1r‘(oppr𝑆)) = (1r‘(oppr𝑆))
4 eqid 2229 . 2 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5 eqid 2229 . 2 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
6 rhmrcl1 14127 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 eqid 2229 . . . . 5 (oppr𝑅) = (oppr𝑅)
87opprringbg 14051 . . . 4 (𝑅 ∈ Ring → (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring))
96, 8syl 14 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring))
106, 9mpbid 147 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Ring)
11 rhmrcl2 14128 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
12 eqid 2229 . . . . 5 (oppr𝑆) = (oppr𝑆)
1312opprringbg 14051 . . . 4 (𝑆 ∈ Ring → (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring))
1411, 13syl 14 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring))
1511, 14mpbid 147 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Ring)
16 eqid 2229 . . . 4 (1r𝑅) = (1r𝑅)
17 eqid 2229 . . . 4 (1r𝑆) = (1r𝑆)
1816, 17rhm1 14139 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
197, 16oppr1g 14053 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) = (1r‘(oppr𝑅)))
206, 19syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑅) = (1r‘(oppr𝑅)))
2120eqcomd 2235 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘(oppr𝑅)) = (1r𝑅))
2221fveq2d 5633 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (𝐹‘(1r𝑅)))
2312, 17oppr1g 14053 . . . . 5 (𝑆 ∈ Ring → (1r𝑆) = (1r‘(oppr𝑆)))
2411, 23syl 14 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑆) = (1r‘(oppr𝑆)))
2524eqcomd 2235 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘(oppr𝑆)) = (1r𝑆))
2618, 22, 253eqtr4d 2272 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (1r‘(oppr𝑆)))
27 simpl 109 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
28 simprr 531 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘(oppr𝑅)))
29 eqid 2229 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
307, 29opprbasg 14046 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
316, 30syl 14 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3227, 31syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3328, 32eleqtrrd 2309 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘𝑅))
34 simprl 529 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘(oppr𝑅)))
3534, 32eleqtrrd 2309 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘𝑅))
36 eqid 2229 . . . . 5 (.r𝑅) = (.r𝑅)
37 eqid 2229 . . . . 5 (.r𝑆) = (.r𝑆)
3829, 36, 37rhmmul 14136 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3927, 33, 35, 38syl3anc 1271 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
4027, 6syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑅 ∈ Ring)
4129, 36, 7, 4opprmulg 14042 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
4240, 34, 28, 41syl3anc 1271 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
4342fveq2d 5633 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = (𝐹‘(𝑦(.r𝑅)𝑥)))
4427, 11syl 14 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑆 ∈ Ring)
45 eqid 2229 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
4629, 45rhmf 14135 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4727, 46syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4847, 35ffvelcdmd 5773 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹𝑥) ∈ (Base‘𝑆))
4947, 33ffvelcdmd 5773 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹𝑦) ∈ (Base‘𝑆))
5045, 37, 12, 5opprmulg 14042 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ (Base‘𝑆)) → ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
5144, 48, 49, 50syl3anc 1271 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
5239, 43, 513eqtr4d 2272 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)))
5310ringgrpd 13976 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Grp)
5415ringgrpd 13976 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Grp)
55 rhmghm 14134 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
5655ad2antrr 488 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
57 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
58 simpr 110 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
59 eqid 2229 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
60 eqid 2229 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
6129, 59, 60ghmlin 13793 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6256, 57, 58, 61syl3anc 1271 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6362ralrimiva 2603 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6463ralrimiva 2603 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6546, 64jca 306 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
6653, 54, 65jca31 309 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
6712, 45opprbasg 14046 . . . . . . . 8 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
6811, 67syl 14 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → (Base‘𝑆) = (Base‘(oppr𝑆)))
6931, 68feq23d 5469 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ↔ 𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆))))
707, 59oppraddg 14047 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (+g𝑅) = (+g‘(oppr𝑅)))
716, 70syl 14 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → (+g𝑅) = (+g‘(oppr𝑅)))
7271oveqd 6024 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
7372fveq2d 5633 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)))
7412, 60oppraddg 14047 . . . . . . . . . . 11 (𝑆 ∈ Ring → (+g𝑆) = (+g‘(oppr𝑆)))
7511, 74syl 14 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → (+g𝑆) = (+g‘(oppr𝑆)))
7675oveqd 6024 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))
7773, 76eqeq12d 2244 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ↔ (𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))
7831, 77raleqbidv 2744 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → (∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ↔ ∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))
7931, 78raleqbidv 2744 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ↔ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))
8069, 79anbi12d 473 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))))
8180anbi2d 464 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))))
8266, 81mpbid 147 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))))
83 eqid 2229 . . . 4 (Base‘(oppr𝑆)) = (Base‘(oppr𝑆))
84 eqid 2229 . . . 4 (+g‘(oppr𝑅)) = (+g‘(oppr𝑅))
85 eqid 2229 . . . 4 (+g‘(oppr𝑆)) = (+g‘(oppr𝑆))
861, 83, 84, 85isghm 13788 . . 3 (𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))))
8782, 86sylibr 134 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)))
881, 2, 3, 4, 5, 10, 15, 26, 52, 87isrhm2d 14137 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wf 5314  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Grpcgrp 13541   GrpHom cghm 13785  1rcur 13930  Ringcrg 13967  opprcoppr 14038   RingHom crh 14122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-map 6805  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-grp 13544  df-ghm 13786  df-mgp 13892  df-ur 13931  df-ring 13969  df-oppr 14039  df-rhm 14124
This theorem is referenced by:  elrhmunit  14149
  Copyright terms: Public domain W3C validator