ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmopp GIF version

Theorem rhmopp 13732
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))

Proof of Theorem rhmopp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
2 eqid 2196 . 2 (1r‘(oppr𝑅)) = (1r‘(oppr𝑅))
3 eqid 2196 . 2 (1r‘(oppr𝑆)) = (1r‘(oppr𝑆))
4 eqid 2196 . 2 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5 eqid 2196 . 2 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
6 rhmrcl1 13711 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 eqid 2196 . . . . 5 (oppr𝑅) = (oppr𝑅)
87opprringbg 13636 . . . 4 (𝑅 ∈ Ring → (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring))
96, 8syl 14 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring))
106, 9mpbid 147 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Ring)
11 rhmrcl2 13712 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
12 eqid 2196 . . . . 5 (oppr𝑆) = (oppr𝑆)
1312opprringbg 13636 . . . 4 (𝑆 ∈ Ring → (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring))
1411, 13syl 14 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring))
1511, 14mpbid 147 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Ring)
16 eqid 2196 . . . 4 (1r𝑅) = (1r𝑅)
17 eqid 2196 . . . 4 (1r𝑆) = (1r𝑆)
1816, 17rhm1 13723 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
197, 16oppr1g 13638 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) = (1r‘(oppr𝑅)))
206, 19syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑅) = (1r‘(oppr𝑅)))
2120eqcomd 2202 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘(oppr𝑅)) = (1r𝑅))
2221fveq2d 5562 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (𝐹‘(1r𝑅)))
2312, 17oppr1g 13638 . . . . 5 (𝑆 ∈ Ring → (1r𝑆) = (1r‘(oppr𝑆)))
2411, 23syl 14 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑆) = (1r‘(oppr𝑆)))
2524eqcomd 2202 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘(oppr𝑆)) = (1r𝑆))
2618, 22, 253eqtr4d 2239 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (1r‘(oppr𝑆)))
27 simpl 109 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
28 simprr 531 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘(oppr𝑅)))
29 eqid 2196 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
307, 29opprbasg 13631 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
316, 30syl 14 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3227, 31syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3328, 32eleqtrrd 2276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘𝑅))
34 simprl 529 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘(oppr𝑅)))
3534, 32eleqtrrd 2276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘𝑅))
36 eqid 2196 . . . . 5 (.r𝑅) = (.r𝑅)
37 eqid 2196 . . . . 5 (.r𝑆) = (.r𝑆)
3829, 36, 37rhmmul 13720 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3927, 33, 35, 38syl3anc 1249 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
4027, 6syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑅 ∈ Ring)
4129, 36, 7, 4opprmulg 13627 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
4240, 34, 28, 41syl3anc 1249 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
4342fveq2d 5562 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = (𝐹‘(𝑦(.r𝑅)𝑥)))
4427, 11syl 14 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑆 ∈ Ring)
45 eqid 2196 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
4629, 45rhmf 13719 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4727, 46syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4847, 35ffvelcdmd 5698 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹𝑥) ∈ (Base‘𝑆))
4947, 33ffvelcdmd 5698 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹𝑦) ∈ (Base‘𝑆))
5045, 37, 12, 5opprmulg 13627 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ (Base‘𝑆)) → ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
5144, 48, 49, 50syl3anc 1249 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
5239, 43, 513eqtr4d 2239 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)))
5310ringgrpd 13561 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Grp)
5415ringgrpd 13561 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Grp)
55 rhmghm 13718 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
5655ad2antrr 488 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
57 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
58 simpr 110 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
59 eqid 2196 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
60 eqid 2196 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
6129, 59, 60ghmlin 13378 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6256, 57, 58, 61syl3anc 1249 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6362ralrimiva 2570 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6463ralrimiva 2570 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
6546, 64jca 306 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
6653, 54, 65jca31 309 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
6712, 45opprbasg 13631 . . . . . . . 8 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
6811, 67syl 14 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → (Base‘𝑆) = (Base‘(oppr𝑆)))
6931, 68feq23d 5403 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ↔ 𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆))))
707, 59oppraddg 13632 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (+g𝑅) = (+g‘(oppr𝑅)))
716, 70syl 14 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → (+g𝑅) = (+g‘(oppr𝑅)))
7271oveqd 5939 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
7372fveq2d 5562 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)))
7412, 60oppraddg 13632 . . . . . . . . . . 11 (𝑆 ∈ Ring → (+g𝑆) = (+g‘(oppr𝑆)))
7511, 74syl 14 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → (+g𝑆) = (+g‘(oppr𝑆)))
7675oveqd 5939 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))
7773, 76eqeq12d 2211 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ↔ (𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))
7831, 77raleqbidv 2709 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → (∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ↔ ∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))
7931, 78raleqbidv 2709 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ↔ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))
8069, 79anbi12d 473 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))))
8180anbi2d 464 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦))))))
8266, 81mpbid 147 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))))
83 eqid 2196 . . . 4 (Base‘(oppr𝑆)) = (Base‘(oppr𝑆))
84 eqid 2196 . . . 4 (+g‘(oppr𝑅)) = (+g‘(oppr𝑅))
85 eqid 2196 . . . 4 (+g‘(oppr𝑆)) = (+g‘(oppr𝑆))
861, 83, 84, 85isghm 13373 . . 3 (𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘(oppr𝑅))⟶(Base‘(oppr𝑆)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦 ∈ (Base‘(oppr𝑅))(𝐹‘(𝑥(+g‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(+g‘(oppr𝑆))(𝐹𝑦)))))
8782, 86sylibr 134 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)))
881, 2, 3, 4, 5, 10, 15, 26, 52, 87isrhm2d 13721 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wf 5254  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Grpcgrp 13132   GrpHom cghm 13370  1rcur 13515  Ringcrg 13552  opprcoppr 13623   RingHom crh 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-oppr 13624  df-rhm 13708
This theorem is referenced by:  elrhmunit  13733
  Copyright terms: Public domain W3C validator