| Step | Hyp | Ref
| Expression |
| 1 | | seqcaopr2.1 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 2 | | seqcaopr2.2 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
| 3 | | seqcaopr2.4 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | | seqcaopr2.5 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) |
| 5 | | seqcaopr2.6 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) |
| 6 | | seqcaopr2.7 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
| 7 | | seqcaopr2g.p |
. 2
⊢ (𝜑 → + ∈ 𝑉) |
| 8 | | seqcaopr2g.f |
. 2
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 9 | | seqcaopr2g.g |
. 2
⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| 10 | | seqcaopr2g.h |
. 2
⊢ (𝜑 → 𝐻 ∈ 𝑌) |
| 11 | | elfzouz 10228 |
. . . . 5
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 12 | 11 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 13 | | elfzouz2 10239 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
| 14 | 13 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ≥‘𝑛)) |
| 15 | | fzss2 10141 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 16 | 14, 15 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 17 | 16 | sselda 3184 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁)) |
| 18 | 5 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆) |
| 19 | 18 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆) |
| 20 | | fveq2 5559 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) |
| 21 | 20 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) |
| 22 | 21 | rspccva 2867 |
. . . . . 6
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
| 23 | 19, 22 | sylan 283 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
| 24 | 17, 23 | syldan 282 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺‘𝑥) ∈ 𝑆) |
| 25 | 1 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 26 | 9 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐺 ∈ 𝑋) |
| 27 | 7 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → + ∈ 𝑉) |
| 28 | 12, 24, 25, 26, 27 | seqclg 10566 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆) |
| 29 | | fzofzp1 10305 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 30 | | fveq2 5559 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
| 31 | 30 | eleq1d 2265 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆)) |
| 32 | 31 | rspccva 2867 |
. . . 4
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
| 33 | 18, 29, 32 | syl2an 289 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
| 34 | 4 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑆) |
| 35 | | fveq2 5559 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 36 | 35 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘𝑥) ∈ 𝑆)) |
| 37 | 36 | rspccva 2867 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 38 | 34, 37 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 39 | 38 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 40 | 17, 39 | syldan 282 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹‘𝑥) ∈ 𝑆) |
| 41 | 8 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐹 ∈ 𝑊) |
| 42 | 12, 40, 25, 41, 27 | seqclg 10566 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) |
| 43 | | fveq2 5559 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 44 | 43 | eleq1d 2265 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
| 45 | 44 | rspccva 2867 |
. . . . 5
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
| 46 | 34, 29, 45 | syl2an 289 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
| 47 | | seqcaopr2.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 48 | 47 | anassrs 400 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 49 | 48 | ralrimivva 2579 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 50 | 49 | ralrimivva 2579 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 51 | 50 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 52 | | oveq1 5930 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧)) |
| 53 | 52 | oveq1d 5938 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤))) |
| 54 | | oveq1 5930 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) |
| 55 | 54 | oveq1d 5938 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))) |
| 56 | 53, 55 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
| 57 | 56 | 2ralbidv 2521 |
. . . . 5
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
| 58 | | oveq1 5930 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤)) |
| 59 | 58 | oveq2d 5939 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
| 60 | | oveq2 5931 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 61 | 60 | oveq1d 5938 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
| 62 | 59, 61 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
| 63 | 62 | 2ralbidv 2521 |
. . . . 5
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
| 64 | 57, 63 | rspc2va 2882 |
. . . 4
⊢
((((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
| 65 | 42, 46, 51, 64 | syl21anc 1248 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
| 66 | | oveq2 5931 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) |
| 67 | 66 | oveq1d 5938 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
| 68 | | oveq1 5930 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) |
| 69 | 68 | oveq2d 5939 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))) |
| 70 | 67, 69 | eqeq12d 2211 |
. . . 4
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)))) |
| 71 | | oveq2 5931 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
| 72 | 71 | oveq2d 5939 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
| 73 | | oveq2 5931 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 74 | 73 | oveq2d 5939 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 75 | 72, 74 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))) |
| 76 | 70, 75 | rspc2va 2882 |
. . 3
⊢
((((seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 77 | 28, 33, 65, 76 | syl21anc 1248 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 78 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
77 | seqcaopr3g 10586 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |