ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqcaopr2g GIF version

Theorem seqcaopr2g 10656
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr2.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
seqcaopr2.3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
seqcaopr2.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr2.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr2.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr2.7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
seqcaopr2g.p (𝜑+𝑉)
seqcaopr2g.f (𝜑𝐹𝑊)
seqcaopr2g.g (𝜑𝐺𝑋)
seqcaopr2g.h (𝜑𝐻𝑌)
Assertion
Ref Expression
seqcaopr2g (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑤,𝑘,𝑥,𝑦,𝑧,𝐹   𝑘,𝐻,𝑧   𝑘,𝑁,𝑥,𝑦,𝑧   𝜑,𝑘,𝑤,𝑥,𝑦,𝑧   𝑘,𝐺,𝑤,𝑥,𝑦,𝑧   𝑘,𝑀,𝑤,𝑥,𝑦,𝑧   𝑄,𝑘,𝑤,𝑥,𝑦,𝑧   𝑤, + ,𝑥,𝑦,𝑧   𝑆,𝑘,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑘)   𝐻(𝑥,𝑦,𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑘)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑘)

Proof of Theorem seqcaopr2g
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqcaopr2.1 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqcaopr2.2 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
3 seqcaopr2.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 seqcaopr2.5 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
5 seqcaopr2.6 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
6 seqcaopr2.7 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
7 seqcaopr2g.p . 2 (𝜑+𝑉)
8 seqcaopr2g.f . 2 (𝜑𝐹𝑊)
9 seqcaopr2g.g . 2 (𝜑𝐺𝑋)
10 seqcaopr2g.h . 2 (𝜑𝐻𝑌)
11 elfzouz 10288 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
1211adantl 277 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
13 elfzouz2 10299 . . . . . . . 8 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
1413adantl 277 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ𝑛))
15 fzss2 10201 . . . . . . 7 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
1614, 15syl 14 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
1716sselda 3197 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁))
185ralrimiva 2580 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐺𝑘) ∈ 𝑆)
1918adantr 276 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐺𝑘) ∈ 𝑆)
20 fveq2 5588 . . . . . . . 8 (𝑘 = 𝑥 → (𝐺𝑘) = (𝐺𝑥))
2120eleq1d 2275 . . . . . . 7 (𝑘 = 𝑥 → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
2221rspccva 2880 . . . . . 6 ((∀𝑘 ∈ (𝑀...𝑁)(𝐺𝑘) ∈ 𝑆𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
2319, 22sylan 283 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
2417, 23syldan 282 . . . 4 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝑆)
251adantlr 477 . . . 4 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
269adantr 276 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐺𝑋)
277adantr 276 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → +𝑉)
2812, 24, 25, 26, 27seqclg 10634 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆)
29 fzofzp1 10373 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
30 fveq2 5588 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
3130eleq1d 2275 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆))
3231rspccva 2880 . . . 4 ((∀𝑘 ∈ (𝑀...𝑁)(𝐺𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
3318, 29, 32syl2an 289 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
344ralrimiva 2580 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑆)
35 fveq2 5588 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635eleq1d 2275 . . . . . . . . 9 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
3736rspccva 2880 . . . . . . . 8 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑆𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
3834, 37sylan 283 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
3938adantlr 477 . . . . . 6 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
4017, 39syldan 282 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹𝑥) ∈ 𝑆)
418adantr 276 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐹𝑊)
4212, 40, 25, 41, 27seqclg 10634 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆)
43 fveq2 5588 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
4443eleq1d 2275 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
4544rspccva 2880 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
4634, 29, 45syl2an 289 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
47 seqcaopr2.3 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4847anassrs 400 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ (𝑧𝑆𝑤𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4948ralrimivva 2589 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
5049ralrimivva 2589 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
5150adantr 276 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
52 oveq1 5963 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧))
5352oveq1d 5971 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)))
54 oveq1 5963 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))
5554oveq1d 5971 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))
5653, 55eqeq12d 2221 . . . . . 6 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
57562ralbidv 2531 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
58 oveq1 5963 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤))
5958oveq2d 5972 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
60 oveq2 5964 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6160oveq1d 5971 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
6259, 61eqeq12d 2221 . . . . . 6 (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
63622ralbidv 2531 . . . . 5 (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
6457, 63rspc2va 2895 . . . 4 ((((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
6542, 46, 51, 64syl21anc 1249 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
66 oveq2 5964 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))
6766oveq1d 5971 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
68 oveq1 5963 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))
6968oveq2d 5972 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)))
7067, 69eqeq12d 2221 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))))
71 oveq2 5964 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
7271oveq2d 5972 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
73 oveq2 5964 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
7473oveq2d 5972 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7572, 74eqeq12d 2221 . . . 4 (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))))
7670, 75rspc2va 2895 . . 3 ((((seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7728, 33, 65, 76syl21anc 1249 . 2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
781, 2, 3, 4, 5, 6, 7, 8, 9, 10, 77seqcaopr3g 10654 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wss 3170  cfv 5279  (class class class)co 5956  1c1 7941   + caddc 7943  cuz 9663  ...cfz 10145  ..^cfzo 10279  seqcseq 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610
This theorem is referenced by:  seqcaoprg  10658
  Copyright terms: Public domain W3C validator