ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submmulg Unicode version

Theorem submmulg 13546
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t  |-  .xb  =  (.g
`  G )
submmulg.h  |-  H  =  ( Gs  S )
submmulg.t  |-  .x.  =  (.g
`  H )
Assertion
Ref Expression
submmulg  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1003 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  S  e.  (SubMnd `  G )
)
2 submmulg.h . . . . . . . 8  |-  H  =  ( Gs  S )
32a1i 9 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  H  =  ( Gs  S ) )
4 eqidd 2207 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  e.  (SubMnd `  G ) )
6 submrcl 13347 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
73, 4, 5, 6ressplusgd 13005 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
81, 7syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( +g  `  G )  =  ( +g  `  H
) )
98seqeq2d 10606 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
109fveq1d 5585 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) )
11 simpr 110 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  N  e.  NN )
12 eqid 2206 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
1312submss 13352 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
14133ad2ant1 1021 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
15 simp3 1002 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  S )
1614, 15sseldd 3195 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
1716adantr 276 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  X  e.  ( Base `  G
) )
18 eqid 2206 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
19 submmulgcl.t . . . . 5  |-  .xb  =  (.g
`  G )
20 eqid 2206 . . . . 5  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
2112, 18, 19, 20mulgnn 13506 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( N  .xb  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
2211, 17, 21syl2anc 411 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .xb  X )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
232submbas 13357 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
24233ad2ant1 1021 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
2515, 24eleqtrd 2285 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
2625adantr 276 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  X  e.  ( Base `  H
) )
27 eqid 2206 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
28 eqid 2206 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
29 submmulg.t . . . . 5  |-  .x.  =  (.g
`  H )
30 eqid 2206 . . . . 5  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
3127, 28, 29, 30mulgnn 13506 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  ( Base `  H ) )  -> 
( N  .x.  X
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
3211, 26, 31syl2anc 411 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  =  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) `  N
) )
3310, 22, 323eqtr4d 2249 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )
34 simpl1 1003 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  S  e.  (SubMnd `  G
) )
35 eqid 2206 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
362, 35subm0 13358 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
3734, 36syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0g `  G
)  =  ( 0g
`  H ) )
3816adantr 276 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  X  e.  ( Base `  G ) )
3912, 35, 19mulg0 13505 . . . . 5  |-  ( X  e.  ( Base `  G
)  ->  ( 0 
.xb  X )  =  ( 0g `  G
) )
4038, 39syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .xb  X
)  =  ( 0g
`  G ) )
4125adantr 276 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  X  e.  ( Base `  H ) )
42 eqid 2206 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
4327, 42, 29mulg0 13505 . . . . 5  |-  ( X  e.  ( Base `  H
)  ->  ( 0 
.x.  X )  =  ( 0g `  H
) )
4441, 43syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .x.  X
)  =  ( 0g
`  H ) )
4537, 40, 443eqtr4d 2249 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .xb  X
)  =  ( 0 
.x.  X ) )
46 simpr 110 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  N  =  0 )
4746oveq1d 5966 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .xb  X
)  =  ( 0 
.xb  X ) )
4846oveq1d 5966 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  ( 0 
.x.  X ) )
4945, 47, 483eqtr4d 2249 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .xb  X
)  =  ( N 
.x.  X ) )
50 simp2 1001 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  N  e.  NN0 )
51 elnn0 9304 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
5250, 51sylib 122 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  e.  NN  \/  N  =  0 ) )
5333, 49, 52mpjaodan 800 1  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177    C_ wss 3167   {csn 3634    X. cxp 4677   ` cfv 5276  (class class class)co 5951   0cc0 7932   1c1 7933   NNcn 9043   NN0cn0 9302    seqcseq 10599   Basecbs 12876   ↾s cress 12877   +g cplusg 12953   0gc0g 13132   Mndcmnd 13292  SubMndcsubmnd 13334  .gcmg 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-submnd 13336  df-minusg 13380  df-mulg 13500
This theorem is referenced by:  lgseisenlem4  15594
  Copyright terms: Public domain W3C validator