| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > submmulg | Unicode version | ||
| Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| submmulgcl.t |
|
| submmulg.h |
|
| submmulg.t |
|
| Ref | Expression |
|---|---|
| submmulg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 |
. . . . . 6
| |
| 2 | submmulg.h |
. . . . . . . 8
| |
| 3 | 2 | a1i 9 |
. . . . . . 7
|
| 4 | eqidd 2230 |
. . . . . . 7
| |
| 5 | id 19 |
. . . . . . 7
| |
| 6 | submrcl 13490 |
. . . . . . 7
| |
| 7 | 3, 4, 5, 6 | ressplusgd 13148 |
. . . . . 6
|
| 8 | 1, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | seqeq2d 10663 |
. . . 4
|
| 10 | 9 | fveq1d 5625 |
. . 3
|
| 11 | simpr 110 |
. . . 4
| |
| 12 | eqid 2229 |
. . . . . . . 8
| |
| 13 | 12 | submss 13495 |
. . . . . . 7
|
| 14 | 13 | 3ad2ant1 1042 |
. . . . . 6
|
| 15 | simp3 1023 |
. . . . . 6
| |
| 16 | 14, 15 | sseldd 3225 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | eqid 2229 |
. . . . 5
| |
| 19 | submmulgcl.t |
. . . . 5
| |
| 20 | eqid 2229 |
. . . . 5
| |
| 21 | 12, 18, 19, 20 | mulgnn 13649 |
. . . 4
|
| 22 | 11, 17, 21 | syl2anc 411 |
. . 3
|
| 23 | 2 | submbas 13500 |
. . . . . . 7
|
| 24 | 23 | 3ad2ant1 1042 |
. . . . . 6
|
| 25 | 15, 24 | eleqtrd 2308 |
. . . . 5
|
| 26 | 25 | adantr 276 |
. . . 4
|
| 27 | eqid 2229 |
. . . . 5
| |
| 28 | eqid 2229 |
. . . . 5
| |
| 29 | submmulg.t |
. . . . 5
| |
| 30 | eqid 2229 |
. . . . 5
| |
| 31 | 27, 28, 29, 30 | mulgnn 13649 |
. . . 4
|
| 32 | 11, 26, 31 | syl2anc 411 |
. . 3
|
| 33 | 10, 22, 32 | 3eqtr4d 2272 |
. 2
|
| 34 | simpl1 1024 |
. . . . 5
| |
| 35 | eqid 2229 |
. . . . . 6
| |
| 36 | 2, 35 | subm0 13501 |
. . . . 5
|
| 37 | 34, 36 | syl 14 |
. . . 4
|
| 38 | 16 | adantr 276 |
. . . . 5
|
| 39 | 12, 35, 19 | mulg0 13648 |
. . . . 5
|
| 40 | 38, 39 | syl 14 |
. . . 4
|
| 41 | 25 | adantr 276 |
. . . . 5
|
| 42 | eqid 2229 |
. . . . . 6
| |
| 43 | 27, 42, 29 | mulg0 13648 |
. . . . 5
|
| 44 | 41, 43 | syl 14 |
. . . 4
|
| 45 | 37, 40, 44 | 3eqtr4d 2272 |
. . 3
|
| 46 | simpr 110 |
. . . 4
| |
| 47 | 46 | oveq1d 6009 |
. . 3
|
| 48 | 46 | oveq1d 6009 |
. . 3
|
| 49 | 45, 47, 48 | 3eqtr4d 2272 |
. 2
|
| 50 | simp2 1022 |
. . 3
| |
| 51 | elnn0 9359 |
. . 3
| |
| 52 | 50, 51 | sylib 122 |
. 2
|
| 53 | 33, 49, 52 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-submnd 13479 df-minusg 13523 df-mulg 13643 |
| This theorem is referenced by: lgseisenlem4 15737 |
| Copyright terms: Public domain | W3C validator |