ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submmulg Unicode version

Theorem submmulg 13239
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t  |-  .xb  =  (.g
`  G )
submmulg.h  |-  H  =  ( Gs  S )
submmulg.t  |-  .x.  =  (.g
`  H )
Assertion
Ref Expression
submmulg  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1002 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  S  e.  (SubMnd `  G )
)
2 submmulg.h . . . . . . . 8  |-  H  =  ( Gs  S )
32a1i 9 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  H  =  ( Gs  S ) )
4 eqidd 2194 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  e.  (SubMnd `  G ) )
6 submrcl 13046 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
73, 4, 5, 6ressplusgd 12749 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
81, 7syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( +g  `  G )  =  ( +g  `  H
) )
98seqeq2d 10528 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
109fveq1d 5557 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) )
11 simpr 110 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  N  e.  NN )
12 eqid 2193 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
1312submss 13051 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
14133ad2ant1 1020 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
15 simp3 1001 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  S )
1614, 15sseldd 3181 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
1716adantr 276 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  X  e.  ( Base `  G
) )
18 eqid 2193 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
19 submmulgcl.t . . . . 5  |-  .xb  =  (.g
`  G )
20 eqid 2193 . . . . 5  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
2112, 18, 19, 20mulgnn 13199 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( N  .xb  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
2211, 17, 21syl2anc 411 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .xb  X )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
232submbas 13056 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
24233ad2ant1 1020 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
2515, 24eleqtrd 2272 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
2625adantr 276 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  X  e.  ( Base `  H
) )
27 eqid 2193 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
28 eqid 2193 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
29 submmulg.t . . . . 5  |-  .x.  =  (.g
`  H )
30 eqid 2193 . . . . 5  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
3127, 28, 29, 30mulgnn 13199 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  ( Base `  H ) )  -> 
( N  .x.  X
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
3211, 26, 31syl2anc 411 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  =  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) `  N
) )
3310, 22, 323eqtr4d 2236 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )
34 simpl1 1002 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  S  e.  (SubMnd `  G
) )
35 eqid 2193 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
362, 35subm0 13057 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
3734, 36syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0g `  G
)  =  ( 0g
`  H ) )
3816adantr 276 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  X  e.  ( Base `  G ) )
3912, 35, 19mulg0 13198 . . . . 5  |-  ( X  e.  ( Base `  G
)  ->  ( 0 
.xb  X )  =  ( 0g `  G
) )
4038, 39syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .xb  X
)  =  ( 0g
`  G ) )
4125adantr 276 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  X  e.  ( Base `  H ) )
42 eqid 2193 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
4327, 42, 29mulg0 13198 . . . . 5  |-  ( X  e.  ( Base `  H
)  ->  ( 0 
.x.  X )  =  ( 0g `  H
) )
4441, 43syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .x.  X
)  =  ( 0g
`  H ) )
4537, 40, 443eqtr4d 2236 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .xb  X
)  =  ( 0 
.x.  X ) )
46 simpr 110 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  N  =  0 )
4746oveq1d 5934 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .xb  X
)  =  ( 0 
.xb  X ) )
4846oveq1d 5934 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  ( 0 
.x.  X ) )
4945, 47, 483eqtr4d 2236 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .xb  X
)  =  ( N 
.x.  X ) )
50 simp2 1000 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  N  e.  NN0 )
51 elnn0 9245 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
5250, 51sylib 122 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  e.  NN  \/  N  =  0 ) )
5333, 49, 52mpjaodan 799 1  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   {csn 3619    X. cxp 4658   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875   NNcn 8984   NN0cn0 9243    seqcseq 10521   Basecbs 12621   ↾s cress 12622   +g cplusg 12698   0gc0g 12870   Mndcmnd 13000  SubMndcsubmnd 13033  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator