ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submmulg Unicode version

Theorem submmulg 13689
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t  |-  .xb  =  (.g
`  G )
submmulg.h  |-  H  =  ( Gs  S )
submmulg.t  |-  .x.  =  (.g
`  H )
Assertion
Ref Expression
submmulg  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1024 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  S  e.  (SubMnd `  G )
)
2 submmulg.h . . . . . . . 8  |-  H  =  ( Gs  S )
32a1i 9 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  H  =  ( Gs  S ) )
4 eqidd 2230 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  e.  (SubMnd `  G ) )
6 submrcl 13490 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
73, 4, 5, 6ressplusgd 13148 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
81, 7syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( +g  `  G )  =  ( +g  `  H
) )
98seqeq2d 10663 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
109fveq1d 5625 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) )
11 simpr 110 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  N  e.  NN )
12 eqid 2229 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
1312submss 13495 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
14133ad2ant1 1042 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
15 simp3 1023 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  S )
1614, 15sseldd 3225 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
1716adantr 276 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  X  e.  ( Base `  G
) )
18 eqid 2229 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
19 submmulgcl.t . . . . 5  |-  .xb  =  (.g
`  G )
20 eqid 2229 . . . . 5  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
2112, 18, 19, 20mulgnn 13649 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( N  .xb  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
2211, 17, 21syl2anc 411 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .xb  X )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
232submbas 13500 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
24233ad2ant1 1042 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
2515, 24eleqtrd 2308 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
2625adantr 276 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  X  e.  ( Base `  H
) )
27 eqid 2229 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
28 eqid 2229 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
29 submmulg.t . . . . 5  |-  .x.  =  (.g
`  H )
30 eqid 2229 . . . . 5  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
3127, 28, 29, 30mulgnn 13649 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  ( Base `  H ) )  -> 
( N  .x.  X
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
3211, 26, 31syl2anc 411 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  =  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) `  N
) )
3310, 22, 323eqtr4d 2272 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )
34 simpl1 1024 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  S  e.  (SubMnd `  G
) )
35 eqid 2229 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
362, 35subm0 13501 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
3734, 36syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0g `  G
)  =  ( 0g
`  H ) )
3816adantr 276 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  X  e.  ( Base `  G ) )
3912, 35, 19mulg0 13648 . . . . 5  |-  ( X  e.  ( Base `  G
)  ->  ( 0 
.xb  X )  =  ( 0g `  G
) )
4038, 39syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .xb  X
)  =  ( 0g
`  G ) )
4125adantr 276 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  X  e.  ( Base `  H ) )
42 eqid 2229 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
4327, 42, 29mulg0 13648 . . . . 5  |-  ( X  e.  ( Base `  H
)  ->  ( 0 
.x.  X )  =  ( 0g `  H
) )
4441, 43syl 14 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .x.  X
)  =  ( 0g
`  H ) )
4537, 40, 443eqtr4d 2272 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( 0  .xb  X
)  =  ( 0 
.x.  X ) )
46 simpr 110 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  N  =  0 )
4746oveq1d 6009 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .xb  X
)  =  ( 0 
.xb  X ) )
4846oveq1d 6009 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  ( 0 
.x.  X ) )
4945, 47, 483eqtr4d 2272 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .xb  X
)  =  ( N 
.x.  X ) )
50 simp2 1022 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  N  e.  NN0 )
51 elnn0 9359 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
5250, 51sylib 122 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  e.  NN  \/  N  =  0 ) )
5333, 49, 52mpjaodan 803 1  |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   {csn 3666    X. cxp 4714   ` cfv 5314  (class class class)co 5994   0cc0 7987   1c1 7988   NNcn 9098   NN0cn0 9357    seqcseq 10656   Basecbs 13018   ↾s cress 13019   +g cplusg 13096   0gc0g 13275   Mndcmnd 13435  SubMndcsubmnd 13477  .gcmg 13642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-submnd 13479  df-minusg 13523  df-mulg 13643
This theorem is referenced by:  lgseisenlem4  15737
  Copyright terms: Public domain W3C validator