ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrrg GIF version

Theorem unitrrg 13799
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
unitrrg.e 𝐸 = (RLReg‘𝑅)
unitrrg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
unitrrg (𝑅 ∈ Ring → 𝑈𝐸)

Proof of Theorem unitrrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
21a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (Base‘𝑅) = (Base‘𝑅))
3 unitrrg.u . . . . . 6 𝑈 = (Unit‘𝑅)
43a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑈 = (Unit‘𝑅))
5 ringsrg 13579 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
65adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑅 ∈ SRing)
7 simpr 110 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥𝑈)
82, 4, 6, 7unitcld 13640 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝑅))
9 oveq2 5930 . . . . . 6 ((𝑥(.r𝑅)𝑦) = (0g𝑅) → (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)))
10 eqid 2196 . . . . . . . . . . 11 (invr𝑅) = (invr𝑅)
11 eqid 2196 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
12 eqid 2196 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
133, 10, 11, 12unitlinv 13658 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1413adantr 276 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1514oveq1d 5937 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑥)(.r𝑅)𝑦) = ((1r𝑅)(.r𝑅)𝑦))
16 simpll 527 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
173, 10, 1ringinvcl 13657 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1817adantr 276 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
198adantr 276 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
20 simpr 110 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
211, 11ringass 13548 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)))
2216, 18, 19, 20, 21syl13anc 1251 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)))
231, 11, 12ringlidm 13555 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
2423adantlr 477 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
2515, 22, 243eqtr3d 2237 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)) = 𝑦)
26 eqid 2196 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
271, 11, 26ringrz 13576 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
2816, 18, 27syl2anc 411 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
2925, 28eqeq12d 2211 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) ↔ 𝑦 = (0g𝑅)))
309, 29imbitrid 154 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅)))
3130ralrimiva 2570 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅)))
32 unitrrg.e . . . . 5 𝐸 = (RLReg‘𝑅)
3332, 1, 11, 26isrrg 13795 . . . 4 (𝑥𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅))))
348, 31, 33sylanbrc 417 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥𝐸)
3534ex 115 . 2 (𝑅 ∈ Ring → (𝑥𝑈𝑥𝐸))
3635ssrdv 3189 1 (𝑅 ∈ Ring → 𝑈𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12654  .rcmulr 12732  0gc0g 12903  1rcur 13491  SRingcsrg 13495  Ringcrg 13528  Unitcui 13619  invrcinvr 13652  RLRegcrlreg 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-minusg 13112  df-cmn 13392  df-abl 13393  df-mgp 13453  df-ur 13492  df-srg 13496  df-ring 13530  df-oppr 13600  df-dvdsr 13621  df-unit 13622  df-invr 13653  df-rlreg 13790
This theorem is referenced by:  znrrg  14192
  Copyright terms: Public domain W3C validator