ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminltinf Unicode version

Theorem xrminltinf 11199
Description: Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
Assertion
Ref Expression
xrminltinf  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  < 
A ) ) )

Proof of Theorem xrminltinf
StepHypRef Expression
1 xnegcl 9759 . . . 4  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
213ad2ant2 1008 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
B  e.  RR* )
3 xnegcl 9759 . . . 4  |-  ( C  e.  RR*  ->  -e
C  e.  RR* )
433ad2ant3 1009 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
C  e.  RR* )
5 xnegcl 9759 . . . 4  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
653ad2ant1 1007 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
A  e.  RR* )
7 xrltmaxsup 11184 . . 3  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR*  /\  -e
A  e.  RR* )  ->  (  -e A  <  sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <->  (  -e
A  <  -e B  \/  -e A  <  -e C ) ) )
82, 4, 6, 7syl3anc 1227 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (  -e A  <  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <-> 
(  -e A  <  -e B  \/  -e A  <  -e
C ) ) )
9 xrminmax 11192 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
1093adant1 1004 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
11 xnegneg 9760 . . . . . 6  |-  ( A  e.  RR*  ->  -e  -e A  =  A )
1211eqcomd 2170 . . . . 5  |-  ( A  e.  RR*  ->  A  = 
-e  -e
A )
13123ad2ant1 1007 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  =  -e  -e
A )
1410, 13breq12d 3989 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e  -e A ) )
15 xrmaxcl 11179 . . . . 5  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
162, 4, 15syl2anc 409 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
17 xltneg 9763 . . . 4  |-  ( ( 
-e A  e. 
RR*  /\  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e. 
RR* )  ->  (  -e A  <  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <  -e  -e A ) )
186, 16, 17syl2anc 409 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (  -e A  <  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <  -e  -e A ) )
1914, 18bitr4d 190 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  -e A  <  sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) ) )
20 simp2 987 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
21 simp1 986 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
22 xltneg 9763 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <  A  <->  -e A  <  -e B ) )
2320, 21, 22syl2anc 409 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <  A  <->  -e A  <  -e B ) )
24 simp3 988 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
25 xltneg 9763 . . . 4  |-  ( ( C  e.  RR*  /\  A  e.  RR* )  ->  ( C  <  A  <->  -e A  <  -e C ) )
2624, 21, 25syl2anc 409 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  <  A  <->  -e A  <  -e C ) )
2723, 26orbi12d 783 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( B  <  A  \/  C  <  A )  <-> 
(  -e A  <  -e B  \/  -e A  <  -e
C ) ) )
288, 19, 273bitr4d 219 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  < 
A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    /\ w3a 967    = wceq 1342    e. wcel 2135   {cpr 3571   class class class wbr 3976   supcsup 6938  infcinf 6939   RR*cxr 7923    < clt 7924    -ecxne 9696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-xneg 9699  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by:  bdbl  13044
  Copyright terms: Public domain W3C validator