![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subaddrii | GIF version |
Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
negidi.1 | ⊢ 𝐴 ∈ ℂ |
pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
subadd.3 | ⊢ 𝐶 ∈ ℂ |
subaddri.4 | ⊢ (𝐵 + 𝐶) = 𝐴 |
Ref | Expression |
---|---|
subaddrii | ⊢ (𝐴 − 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subaddri.4 | . 2 ⊢ (𝐵 + 𝐶) = 𝐴 | |
2 | negidi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | pncan3i.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | subadd.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
5 | 2, 3, 4 | subaddi 8258 | . 2 ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) |
6 | 1, 5 | mpbir 146 | 1 ⊢ (𝐴 − 𝐵) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 (class class class)co 5888 ℂcc 7823 + caddc 7828 − cmin 8142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-resscn 7917 ax-1cn 7918 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sub 8144 |
This theorem is referenced by: 2m1e1 9051 3m1e2 9053 halfthird 9540 5recm6rec 9541 fzo0to42pr 10234 4bc3eq4 10767 4bc2eq6 10768 cos1bnd 11781 cos2bnd 11782 pythagtriplem1 12279 cosq14gt0 14606 sincos6thpi 14616 lgsdir2lem1 14782 |
Copyright terms: Public domain | W3C validator |