ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprirr GIF version

Theorem aprirr 13917
Description: The apartness relation given by df-apr 13915 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
Hypotheses
Ref Expression
aprirr.b (𝜑𝐵 = (Base‘𝑅))
aprirr.ap (𝜑# = (#r𝑅))
aprirr.r (𝜑𝑅 ∈ Ring)
aprirr.x (𝜑𝑋𝐵)
aprirr.nz (𝜑 → (1r𝑅) ≠ (0g𝑅))
Assertion
Ref Expression
aprirr (𝜑 → ¬ 𝑋 # 𝑋)

Proof of Theorem aprirr
StepHypRef Expression
1 aprirr.r . . . . 5 (𝜑𝑅 ∈ Ring)
21ringgrpd 13639 . . . 4 (𝜑𝑅 ∈ Grp)
3 aprirr.x . . . . 5 (𝜑𝑋𝐵)
4 aprirr.b . . . . 5 (𝜑𝐵 = (Base‘𝑅))
53, 4eleqtrd 2275 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
6 eqid 2196 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2196 . . . . 5 (0g𝑅) = (0g𝑅)
8 eqid 2196 . . . . 5 (-g𝑅) = (-g𝑅)
96, 7, 8grpsubid 13288 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋(-g𝑅)𝑋) = (0g𝑅))
102, 5, 9syl2anc 411 . . 3 (𝜑 → (𝑋(-g𝑅)𝑋) = (0g𝑅))
11 aprirr.nz . . . . 5 (𝜑 → (1r𝑅) ≠ (0g𝑅))
1211neneqd 2388 . . . 4 (𝜑 → ¬ (1r𝑅) = (0g𝑅))
13 eqid 2196 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
14 eqid 2196 . . . . . 6 (1r𝑅) = (1r𝑅)
1513, 7, 140unit 13763 . . . . 5 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
161, 15syl 14 . . . 4 (𝜑 → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
1712, 16mtbird 674 . . 3 (𝜑 → ¬ (0g𝑅) ∈ (Unit‘𝑅))
1810, 17eqneltrd 2292 . 2 (𝜑 → ¬ (𝑋(-g𝑅)𝑋) ∈ (Unit‘𝑅))
19 aprirr.ap . . 3 (𝜑# = (#r𝑅))
20 eqidd 2197 . . 3 (𝜑 → (-g𝑅) = (-g𝑅))
21 eqidd 2197 . . 3 (𝜑 → (Unit‘𝑅) = (Unit‘𝑅))
224, 19, 20, 21, 1, 3, 3aprval 13916 . 2 (𝜑 → (𝑋 # 𝑋 ↔ (𝑋(-g𝑅)𝑋) ∈ (Unit‘𝑅)))
2318, 22mtbird 674 1 (𝜑 → ¬ 𝑋 # 𝑋)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259  (class class class)co 5925  Basecbs 12705  0gc0g 12960  Grpcgrp 13204  -gcsg 13206  1rcur 13593  Ringcrg 13630  Unitcui 13721  #rcapr 13914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-sbg 13209  df-cmn 13494  df-abl 13495  df-mgp 13555  df-ur 13594  df-srg 13598  df-ring 13632  df-oppr 13702  df-dvdsr 13723  df-unit 13724  df-invr 13755  df-apr 13915
This theorem is referenced by:  aprap  13920
  Copyright terms: Public domain W3C validator