ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0neg1 GIF version

Theorem lt0neg1 8198
Description: Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
lt0neg1 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))

Proof of Theorem lt0neg1
StepHypRef Expression
1 0re 7734 . . 3 0 ∈ ℝ
2 ltneg 8192 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ↔ -0 < -𝐴))
31, 2mpan2 421 . 2 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ -0 < -𝐴))
4 neg0 7976 . . 3 -0 = 0
54breq1i 3906 . 2 (-0 < -𝐴 ↔ 0 < -𝐴)
63, 5syl6bb 195 1 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1465   class class class wbr 3899  cr 7587  0cc0 7588   < clt 7768  -cneg 7902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-ltxr 7773  df-sub 7903  df-neg 7904
This theorem is referenced by:  mullt0  8210  lt0neg1d  8245  recexre  8308  rpnegap  9442  negelrp  9443
  Copyright terms: Public domain W3C validator