ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xle0neg1 GIF version

Theorem xle0neg1 9591
Description: Extended real version of le0neg1 8200. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
xle0neg1 (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴))

Proof of Theorem xle0neg1
StepHypRef Expression
1 0xr 7780 . . 3 0 ∈ ℝ*
2 xleneg 9588 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≤ 0 ↔ -𝑒0 ≤ -𝑒𝐴))
31, 2mpan2 421 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ -𝑒0 ≤ -𝑒𝐴))
4 xneg0 9582 . . 3 -𝑒0 = 0
54breq1i 3906 . 2 (-𝑒0 ≤ -𝑒𝐴 ↔ 0 ≤ -𝑒𝐴)
63, 5syl6bb 195 1 (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1465   class class class wbr 3899  0cc0 7588  *cxr 7767  cle 7769  -𝑒cxne 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-xneg 9527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator