| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > conjnsg | GIF version | ||
| Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
| conjghm.p | ⊢ + = (+g‘𝐺) |
| conjghm.m | ⊢ − = (-g‘𝐺) |
| conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
| Ref | Expression |
|---|---|
| conjnsg | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13737 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} | |
| 3 | conjghm.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | conjghm.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 5 | 2, 3, 4 | isnsg4 13744 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋)) |
| 6 | 5 | simprbi 275 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋) |
| 7 | 6 | eleq2d 2299 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ↔ 𝐴 ∈ 𝑋)) |
| 8 | 7 | biimpar 297 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) |
| 9 | conjghm.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 10 | conjsubg.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
| 11 | 3, 4, 9, 10, 2 | conjnmz 13811 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) → 𝑆 = ran 𝐹) |
| 12 | 1, 8, 11 | syl2an2r 597 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ↦ cmpt 4144 ran crn 4719 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 -gcsg 13530 SubGrpcsubg 13699 NrmSGrpcnsg 13700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-sbg 13533 df-subg 13702 df-nsg 13703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |