Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzmlbm | GIF version |
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
elfzmlbm | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9924 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | uznn0sub 9470 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 − 𝑀) ∈ ℕ0) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ ℕ0) |
4 | elfzuz2 9931 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | uznn0sub 9470 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) |
7 | elfzelz 9928 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
8 | 7 | zred 9286 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ) |
9 | elfzel2 9926 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
10 | 9 | zred 9286 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ) |
11 | elfzel1 9927 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
12 | 11 | zred 9286 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℝ) |
13 | elfzle2 9930 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | |
14 | 8, 10, 12, 13 | lesub1dd 8436 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ≤ (𝑁 − 𝑀)) |
15 | elfz2nn0 10014 | . 2 ⊢ ((𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀)) ↔ ((𝐾 − 𝑀) ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ (𝐾 − 𝑀) ≤ (𝑁 − 𝑀))) | |
16 | 3, 6, 14, 15 | syl3anbrc 1166 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 class class class wbr 3965 ‘cfv 5170 (class class class)co 5824 0cc0 7732 ≤ cle 7913 − cmin 8046 ℕ0cn0 9090 ℤ≥cuz 9439 ...cfz 9912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-inn 8834 df-n0 9091 df-z 9168 df-uz 9440 df-fz 9913 |
This theorem is referenced by: bcm1k 10634 |
Copyright terms: Public domain | W3C validator |