| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10116 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzle 9632 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ≤ cle 8081 ℤ≥cuz 9620 ...cfz 10102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8219 df-z 9346 df-uz 9621 df-fz 10103 |
| This theorem is referenced by: elfz1eq 10129 fzdisj 10146 fznatpl1 10170 fzp1disj 10174 uzdisj 10187 fzneuz 10195 fznuz 10196 elfzmlbm 10225 difelfznle 10229 nn0disj 10232 iseqf1olemqcl 10610 iseqf1olemnab 10612 iseqf1olemab 10613 iseqf1olemqk 10618 iseqf1olemfvp 10621 seq3f1olemqsumkj 10622 seq3f1olemqsumk 10623 seq3f1olemqsum 10624 seq3f1oleml 10627 seq3f1o 10628 seqf1oglem1 10630 seqf1oglem2 10631 seqfeq4g 10642 bcval4 10863 bcp1nk 10873 zfz1isolemiso 10950 seq3coll 10953 summodclem3 11564 summodclem2a 11565 fsum3 11571 fsumcl2lem 11582 fsum0diaglem 11624 mertenslemi1 11719 prodmodclem3 11759 prodmodclem2a 11760 fprodseq 11767 fzm1ndvds 12040 prmind2 12315 prmdvdsfz 12334 isprm5lem 12336 hashdvds 12416 eulerthlemrprm 12424 eulerthlema 12425 prmdiveq 12431 4sqlem11 12597 4sqlem12 12598 ennnfonelemim 12668 ctinfomlemom 12671 gsumfzfsumlemm 14221 wilthlem1 15324 lgsval2lem 15359 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgsquadlem1 15426 lgsquadlem2 15427 2lgslem1a 15437 supfz 15828 |
| Copyright terms: Public domain | W3C validator |