Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version |
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 9990 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzle 9511 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ≤ cle 7967 ℤ≥cuz 9499 ...cfz 9977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-neg 8105 df-z 9225 df-uz 9500 df-fz 9978 |
This theorem is referenced by: elfz1eq 10003 fzdisj 10020 fznatpl1 10044 fzp1disj 10048 uzdisj 10061 fzneuz 10069 fznuz 10070 elfzmlbm 10099 difelfznle 10103 nn0disj 10106 iseqf1olemqcl 10454 iseqf1olemnab 10456 iseqf1olemab 10457 iseqf1olemqk 10462 iseqf1olemfvp 10465 seq3f1olemqsumkj 10466 seq3f1olemqsumk 10467 seq3f1olemqsum 10468 seq3f1oleml 10471 seq3f1o 10472 bcval4 10698 bcp1nk 10708 zfz1isolemiso 10785 seq3coll 10788 summodclem3 11354 summodclem2a 11355 fsum3 11361 fsumcl2lem 11372 fsum0diaglem 11414 mertenslemi1 11509 prodmodclem3 11549 prodmodclem2a 11550 fprodseq 11557 fzm1ndvds 11827 prmind2 12085 prmdvdsfz 12104 isprm5lem 12106 hashdvds 12186 eulerthlemrprm 12194 eulerthlema 12195 prmdiveq 12201 ennnfonelemim 12390 ctinfomlemom 12393 lgsval2lem 13980 supfz 14375 |
Copyright terms: Public domain | W3C validator |