| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10144 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzle 9660 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 ≤ cle 8108 ℤ≥cuz 9648 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-neg 8246 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: elfz1eq 10157 fzdisj 10174 fznatpl1 10198 fzp1disj 10202 uzdisj 10215 fzneuz 10223 fznuz 10224 elfzmlbm 10253 difelfznle 10257 nn0disj 10260 iseqf1olemqcl 10644 iseqf1olemnab 10646 iseqf1olemab 10647 iseqf1olemqk 10652 iseqf1olemfvp 10655 seq3f1olemqsumkj 10656 seq3f1olemqsumk 10657 seq3f1olemqsum 10658 seq3f1oleml 10661 seq3f1o 10662 seqf1oglem1 10664 seqf1oglem2 10665 seqfeq4g 10676 bcval4 10897 bcp1nk 10907 zfz1isolemiso 10984 seq3coll 10987 summodclem3 11691 summodclem2a 11692 fsum3 11698 fsumcl2lem 11709 fsum0diaglem 11751 mertenslemi1 11846 prodmodclem3 11886 prodmodclem2a 11887 fprodseq 11894 fzm1ndvds 12167 prmind2 12442 prmdvdsfz 12461 isprm5lem 12463 hashdvds 12543 eulerthlemrprm 12551 eulerthlema 12552 prmdiveq 12558 4sqlem11 12724 4sqlem12 12725 ennnfonelemim 12795 ctinfomlemom 12798 gsumfzfsumlemm 14349 wilthlem1 15452 lgsval2lem 15487 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1a 15565 supfz 16010 |
| Copyright terms: Public domain | W3C validator |