| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10097 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzle 9613 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ≤ cle 8062 ℤ≥cuz 9601 ...cfz 10083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-neg 8200 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: elfz1eq 10110 fzdisj 10127 fznatpl1 10151 fzp1disj 10155 uzdisj 10168 fzneuz 10176 fznuz 10177 elfzmlbm 10206 difelfznle 10210 nn0disj 10213 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemab 10594 iseqf1olemqk 10599 iseqf1olemfvp 10602 seq3f1olemqsumkj 10603 seq3f1olemqsumk 10604 seq3f1olemqsum 10605 seq3f1oleml 10608 seq3f1o 10609 seqf1oglem1 10611 seqf1oglem2 10612 seqfeq4g 10623 bcval4 10844 bcp1nk 10854 zfz1isolemiso 10931 seq3coll 10934 summodclem3 11545 summodclem2a 11546 fsum3 11552 fsumcl2lem 11563 fsum0diaglem 11605 mertenslemi1 11700 prodmodclem3 11740 prodmodclem2a 11741 fprodseq 11748 fzm1ndvds 12021 prmind2 12288 prmdvdsfz 12307 isprm5lem 12309 hashdvds 12389 eulerthlemrprm 12397 eulerthlema 12398 prmdiveq 12404 4sqlem11 12570 4sqlem12 12571 ennnfonelemim 12641 ctinfomlemom 12644 gsumfzfsumlemm 14143 wilthlem1 15216 lgsval2lem 15251 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem1a 15329 supfz 15715 |
| Copyright terms: Public domain | W3C validator |