![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version |
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 10091 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzle 9607 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ≤ cle 8057 ℤ≥cuz 9595 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-neg 8195 df-z 9321 df-uz 9596 df-fz 10078 |
This theorem is referenced by: elfz1eq 10104 fzdisj 10121 fznatpl1 10145 fzp1disj 10149 uzdisj 10162 fzneuz 10170 fznuz 10171 elfzmlbm 10200 difelfznle 10204 nn0disj 10207 iseqf1olemqcl 10573 iseqf1olemnab 10575 iseqf1olemab 10576 iseqf1olemqk 10581 iseqf1olemfvp 10584 seq3f1olemqsumkj 10585 seq3f1olemqsumk 10586 seq3f1olemqsum 10587 seq3f1oleml 10590 seq3f1o 10591 seqf1oglem1 10593 seqf1oglem2 10594 seqfeq4g 10605 bcval4 10826 bcp1nk 10836 zfz1isolemiso 10913 seq3coll 10916 summodclem3 11526 summodclem2a 11527 fsum3 11533 fsumcl2lem 11544 fsum0diaglem 11586 mertenslemi1 11681 prodmodclem3 11721 prodmodclem2a 11722 fprodseq 11729 fzm1ndvds 12001 prmind2 12261 prmdvdsfz 12280 isprm5lem 12282 hashdvds 12362 eulerthlemrprm 12370 eulerthlema 12371 prmdiveq 12377 4sqlem11 12542 4sqlem12 12543 ennnfonelemim 12584 ctinfomlemom 12587 gsumfzfsumlemm 14086 wilthlem1 15153 lgsval2lem 15167 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1a 15245 supfz 15631 |
Copyright terms: Public domain | W3C validator |