| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10214 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzle 9730 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ≤ cle 8178 ℤ≥cuz 9718 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-neg 8316 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: elfz1eq 10227 fzdisj 10244 fznatpl1 10268 fzp1disj 10272 uzdisj 10285 fzneuz 10293 fznuz 10294 elfzmlbm 10323 difelfznle 10327 nn0disj 10330 iseqf1olemqcl 10716 iseqf1olemnab 10718 iseqf1olemab 10719 iseqf1olemqk 10724 iseqf1olemfvp 10727 seq3f1olemqsumkj 10728 seq3f1olemqsumk 10729 seq3f1olemqsum 10730 seq3f1oleml 10733 seq3f1o 10734 seqf1oglem1 10736 seqf1oglem2 10737 seqfeq4g 10748 bcval4 10969 bcp1nk 10979 zfz1isolemiso 11056 seq3coll 11059 summodclem3 11886 summodclem2a 11887 fsum3 11893 fsumcl2lem 11904 fsum0diaglem 11946 mertenslemi1 12041 prodmodclem3 12081 prodmodclem2a 12082 fprodseq 12089 fzm1ndvds 12362 prmind2 12637 prmdvdsfz 12656 isprm5lem 12658 hashdvds 12738 eulerthlemrprm 12746 eulerthlema 12747 prmdiveq 12753 4sqlem11 12919 4sqlem12 12920 ennnfonelemim 12990 ctinfomlemom 12993 gsumfzfsumlemm 14545 wilthlem1 15648 lgsval2lem 15683 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1a 15761 supfz 16398 |
| Copyright terms: Public domain | W3C validator |