| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | GIF version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10143 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzle 9659 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ≤ cle 8107 ℤ≥cuz 9647 ...cfz 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-neg 8245 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: elfz1eq 10156 fzdisj 10173 fznatpl1 10197 fzp1disj 10201 uzdisj 10214 fzneuz 10222 fznuz 10223 elfzmlbm 10252 difelfznle 10256 nn0disj 10259 iseqf1olemqcl 10642 iseqf1olemnab 10644 iseqf1olemab 10645 iseqf1olemqk 10650 iseqf1olemfvp 10653 seq3f1olemqsumkj 10654 seq3f1olemqsumk 10655 seq3f1olemqsum 10656 seq3f1oleml 10659 seq3f1o 10660 seqf1oglem1 10662 seqf1oglem2 10663 seqfeq4g 10674 bcval4 10895 bcp1nk 10905 zfz1isolemiso 10982 seq3coll 10985 summodclem3 11633 summodclem2a 11634 fsum3 11640 fsumcl2lem 11651 fsum0diaglem 11693 mertenslemi1 11788 prodmodclem3 11828 prodmodclem2a 11829 fprodseq 11836 fzm1ndvds 12109 prmind2 12384 prmdvdsfz 12403 isprm5lem 12405 hashdvds 12485 eulerthlemrprm 12493 eulerthlema 12494 prmdiveq 12500 4sqlem11 12666 4sqlem12 12667 ennnfonelemim 12737 ctinfomlemom 12740 gsumfzfsumlemm 14291 wilthlem1 15394 lgsval2lem 15429 lgseisenlem1 15489 lgseisenlem2 15490 lgseisenlem3 15491 lgsquadlem1 15496 lgsquadlem2 15497 2lgslem1a 15507 supfz 15943 |
| Copyright terms: Public domain | W3C validator |