ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzle2 GIF version

Theorem elfzle2 10030
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzle2 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)

Proof of Theorem elfzle2
StepHypRef Expression
1 elfzuz3 10024 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2 eluzle 9542 . 2 (𝑁 ∈ (ℤ𝐾) → 𝐾𝑁)
31, 2syl 14 1 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5877  cle 7995  cuz 9530  ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-neg 8133  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by:  elfz1eq  10037  fzdisj  10054  fznatpl1  10078  fzp1disj  10082  uzdisj  10095  fzneuz  10103  fznuz  10104  elfzmlbm  10133  difelfznle  10137  nn0disj  10140  iseqf1olemqcl  10488  iseqf1olemnab  10490  iseqf1olemab  10491  iseqf1olemqk  10496  iseqf1olemfvp  10499  seq3f1olemqsumkj  10500  seq3f1olemqsumk  10501  seq3f1olemqsum  10502  seq3f1oleml  10505  seq3f1o  10506  bcval4  10734  bcp1nk  10744  zfz1isolemiso  10821  seq3coll  10824  summodclem3  11390  summodclem2a  11391  fsum3  11397  fsumcl2lem  11408  fsum0diaglem  11450  mertenslemi1  11545  prodmodclem3  11585  prodmodclem2a  11586  fprodseq  11593  fzm1ndvds  11864  prmind2  12122  prmdvdsfz  12141  isprm5lem  12143  hashdvds  12223  eulerthlemrprm  12231  eulerthlema  12232  prmdiveq  12238  ennnfonelemim  12427  ctinfomlemom  12430  lgsval2lem  14450  lgseisenlem1  14489  lgseisenlem2  14490  supfz  14858
  Copyright terms: Public domain W3C validator