ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidom GIF version

Theorem znidom 14586
Description: The ℤ/n structure is an integral domain when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znidom (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)

Proof of Theorem znidom
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 12598 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
2 nnnn0 9344 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2syl 14 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
4 zntos.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
54zncrng 14574 . . 3 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
63, 5syl 14 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ CRing)
7 crngring 13937 . . . . 5 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
81, 2, 5, 74syl 18 . . . 4 (𝑁 ∈ ℙ → 𝑌 ∈ Ring)
9 hash2 11001 . . . . . 6 (♯‘2o) = 2
10 prmuz2 12619 . . . . . . . 8 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
11 eluzle 9702 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1210, 11syl 14 . . . . . . 7 (𝑁 ∈ ℙ → 2 ≤ 𝑁)
13 eqid 2209 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
144, 13znhash 14585 . . . . . . . 8 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
151, 14syl 14 . . . . . . 7 (𝑁 ∈ ℙ → (♯‘(Base‘𝑌)) = 𝑁)
1612, 15breqtrrd 4090 . . . . . 6 (𝑁 ∈ ℙ → 2 ≤ (♯‘(Base‘𝑌)))
179, 16eqbrtrid 4097 . . . . 5 (𝑁 ∈ ℙ → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
18 2onn 6637 . . . . . . . 8 2o ∈ ω
19 nnfi 7002 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2018, 19ax-mp 5 . . . . . . 7 2o ∈ Fin
214, 13znfi 14584 . . . . . . 7 (𝑁 ∈ ℕ → (Base‘𝑌) ∈ Fin)
22 fihashdom 10992 . . . . . . 7 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ Fin) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2320, 21, 22sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
241, 23syl 14 . . . . 5 (𝑁 ∈ ℙ → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2517, 24mpbid 147 . . . 4 (𝑁 ∈ ℙ → 2o ≼ (Base‘𝑌))
2613isnzr2 14113 . . . 4 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
278, 25, 26sylanbrc 417 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ NzRing)
28 eqid 2209 . . . . . . . 8 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
294, 13, 28znzrhfo 14577 . . . . . . 7 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
303, 29syl 14 . . . . . 6 (𝑁 ∈ ℙ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
31 foelrn 5849 . . . . . . 7 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧))
32 foelrn 5849 . . . . . . 7 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌)) → ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))
3331, 32anim12dan 602 . . . . . 6 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
3430, 33sylan 283 . . . . 5 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
35 reeanv 2681 . . . . . . 7 (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) ↔ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
36 euclemma 12634 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
37363expb 1209 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
388adantr 276 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑌 ∈ Ring)
3928zrhrhm 14552 . . . . . . . . . . . . . . 15 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
4038, 39syl 14 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
41 simprl 529 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑧 ∈ ℤ)
42 simprr 531 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑤 ∈ ℤ)
43 zringbas 14525 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
44 zringmulr 14528 . . . . . . . . . . . . . . 15 · = (.r‘ℤring)
45 eqid 2209 . . . . . . . . . . . . . . 15 (.r𝑌) = (.r𝑌)
4643, 44, 45rhmmul 14093 . . . . . . . . . . . . . 14 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4740, 41, 42, 46syl3anc 1252 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4847eqeq1d 2218 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
49 zmulcl 9468 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑧 · 𝑤) ∈ ℤ)
50 eqid 2209 . . . . . . . . . . . . . 14 (0g𝑌) = (0g𝑌)
514, 28, 50zndvds0 14579 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑧 · 𝑤) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
523, 49, 51syl2an 289 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
5348, 52bitr3d 190 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
544, 28, 50zndvds0 14579 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
553, 41, 54syl2an2r 597 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
564, 28, 50zndvds0 14579 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑤 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
573, 42, 56syl2an2r 597 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
5855, 57orbi12d 797 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)) ↔ (𝑁𝑧𝑁𝑤)))
5937, 53, 583bitr4d 220 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6059biimpd 144 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
61 oveq12 5983 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (𝑥(.r𝑌)𝑦) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
6261eqeq1d 2218 . . . . . . . . . 10 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
63 eqeq1 2216 . . . . . . . . . . . 12 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑧) = (0g𝑌)))
6463orbi1d 795 . . . . . . . . . . 11 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
65 eqeq1 2216 . . . . . . . . . . . 12 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → (𝑦 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))
6665orbi2d 794 . . . . . . . . . . 11 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6764, 66sylan9bb 462 . . . . . . . . . 10 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6862, 67imbi12d 234 . . . . . . . . 9 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))) ↔ ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))))
6960, 68syl5ibrcom 157 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7069rexlimdvva 2636 . . . . . . 7 (𝑁 ∈ ℙ → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7135, 70biimtrrid 153 . . . . . 6 (𝑁 ∈ ℙ → ((∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7271imp 124 . . . . 5 ((𝑁 ∈ ℙ ∧ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7334, 72syldan 282 . . . 4 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7473ralrimivva 2592 . . 3 (𝑁 ∈ ℙ → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7513, 45, 50isdomn 14198 . . 3 (𝑌 ∈ Domn ↔ (𝑌 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7627, 74, 75sylanbrc 417 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ Domn)
77 isidom 14205 . 2 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
786, 76, 77sylanbrc 417 1 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712   = wceq 1375  wcel 2180  wral 2488  wrex 2489   class class class wbr 4062  ωcom 4659  ontowfo 5292  cfv 5294  (class class class)co 5974  2oc2o 6526  cdom 6856  Fincfn 6857   · cmul 7972  cle 8150  cn 9078  2c2 9129  0cn0 9337  cz 9414  cuz 9690  chash 10964  cdvds 12264  cprime 12595  Basecbs 12998  .rcmulr 13077  0gc0g 13255  Ringcrg 13925  CRingccrg 13926   RingHom crh 14079  NzRingcnzr 14108  Domncdomn 14185  IDomncidom 14186  ringczring 14519  ℤRHomczrh 14540  ℤ/nczn 14542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-ec 6652  df-qs 6656  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441  df-prm 12596  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-iimas 13301  df-qus 13302  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-grp 13502  df-minusg 13503  df-sbg 13504  df-mulg 13623  df-subg 13673  df-nsg 13674  df-eqg 13675  df-ghm 13744  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-rhm 14081  df-nzr 14109  df-subrg 14148  df-domn 14188  df-idom 14189  df-lmod 14218  df-lssm 14282  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-rsp 14399  df-2idl 14429  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520  df-zrh 14543  df-zn 14545
This theorem is referenced by:  znidomb  14587  lgseisenlem3  15716
  Copyright terms: Public domain W3C validator