| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rrgnz | GIF version | ||
| Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) |
| Ref | Expression |
|---|---|
| rrgnz.t | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgnz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rrgnz | ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | rrgnz.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | nzrnz 14014 | . . 3 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 4 | 3 | neneqd 2398 | . 2 ⊢ (𝑅 ∈ NzRing → ¬ (1r‘𝑅) = 0 ) |
| 5 | nzrring 14015 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → 𝑅 ∈ Ring) |
| 7 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → 0 ∈ 𝐸) | |
| 8 | eqid 2206 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 1 | ringidcl 13852 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | 6, 9 | syl 14 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | eqid 2206 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 8, 11, 2, 6, 10 | ringlzd 13877 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → ( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ) |
| 13 | rrgnz.t | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 14 | 13, 8, 11, 2 | rrgeq0 14097 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ↔ (1r‘𝑅) = 0 )) |
| 15 | 14 | biimpa 296 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ ( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ) → (1r‘𝑅) = 0 ) |
| 16 | 6, 7, 10, 12, 15 | syl31anc 1253 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → (1r‘𝑅) = 0 ) |
| 17 | 4, 16 | mtand 667 | 1 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 .rcmulr 12980 0gc0g 13158 1rcur 13791 Ringcrg 13828 NzRingcnzr 14011 RLRegcrlreg 14087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-minusg 13406 df-mgp 13753 df-ur 13792 df-ring 13830 df-nzr 14012 df-rlreg 14090 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |