ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgnz GIF version

Theorem rrgnz 14240
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
Hypotheses
Ref Expression
rrgnz.t 𝐸 = (RLReg‘𝑅)
rrgnz.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgnz (𝑅 ∈ NzRing → ¬ 0𝐸)

Proof of Theorem rrgnz
StepHypRef Expression
1 eqid 2229 . . . 4 (1r𝑅) = (1r𝑅)
2 rrgnz.z . . . 4 0 = (0g𝑅)
31, 2nzrnz 14154 . . 3 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
43neneqd 2421 . 2 (𝑅 ∈ NzRing → ¬ (1r𝑅) = 0 )
5 nzrring 14155 . . . 4 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
65adantr 276 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → 𝑅 ∈ Ring)
7 simpr 110 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → 0𝐸)
8 eqid 2229 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1ringidcl 13991 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
106, 9syl 14 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → (1r𝑅) ∈ (Base‘𝑅))
11 eqid 2229 . . . 4 (.r𝑅) = (.r𝑅)
128, 11, 2, 6, 10ringlzd 14016 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → ( 0 (.r𝑅)(1r𝑅)) = 0 )
13 rrgnz.t . . . . 5 𝐸 = (RLReg‘𝑅)
1413, 8, 11, 2rrgeq0 14237 . . . 4 ((𝑅 ∈ Ring ∧ 0𝐸 ∧ (1r𝑅) ∈ (Base‘𝑅)) → (( 0 (.r𝑅)(1r𝑅)) = 0 ↔ (1r𝑅) = 0 ))
1514biimpa 296 . . 3 (((𝑅 ∈ Ring ∧ 0𝐸 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ ( 0 (.r𝑅)(1r𝑅)) = 0 ) → (1r𝑅) = 0 )
166, 7, 10, 12, 15syl31anc 1274 . 2 ((𝑅 ∈ NzRing ∧ 0𝐸) → (1r𝑅) = 0 )
174, 16mtand 669 1 (𝑅 ∈ NzRing → ¬ 0𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  Basecbs 13040  .rcmulr 13119  0gc0g 13297  1rcur 13930  Ringcrg 13967  NzRingcnzr 14151  RLRegcrlreg 14227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mgp 13892  df-ur 13931  df-ring 13969  df-nzr 14152  df-rlreg 14230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator