![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rrgnz | GIF version |
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) |
Ref | Expression |
---|---|
rrgnz.t | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgnz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rrgnz | ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2196 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | rrgnz.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | nzrnz 13714 | . . 3 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
4 | 3 | neneqd 2388 | . 2 ⊢ (𝑅 ∈ NzRing → ¬ (1r‘𝑅) = 0 ) |
5 | nzrring 13715 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
6 | 5 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → 𝑅 ∈ Ring) |
7 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → 0 ∈ 𝐸) | |
8 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 1 | ringidcl 13552 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 6, 9 | syl 14 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | eqid 2196 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 8, 11, 2, 6, 10 | ringlzd 13577 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → ( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ) |
13 | rrgnz.t | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
14 | 13, 8, 11, 2 | rrgeq0 13797 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ↔ (1r‘𝑅) = 0 )) |
15 | 14 | biimpa 296 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ ( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ) → (1r‘𝑅) = 0 ) |
16 | 6, 7, 10, 12, 15 | syl31anc 1252 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → (1r‘𝑅) = 0 ) |
17 | 4, 16 | mtand 666 | 1 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 .rcmulr 12732 0gc0g 12903 1rcur 13491 Ringcrg 13528 NzRingcnzr 13711 RLRegcrlreg 13787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-pre-ltirr 7989 ax-pre-ltadd 7993 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8061 df-mnf 8062 df-ltxr 8064 df-inn 8988 df-2 9046 df-3 9047 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-plusg 12744 df-mulr 12745 df-0g 12905 df-mgm 12975 df-sgrp 13021 df-mnd 13034 df-grp 13111 df-minusg 13112 df-mgp 13453 df-ur 13492 df-ring 13530 df-nzr 13712 df-rlreg 13790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |