ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgnz GIF version

Theorem rrgnz 14100
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
Hypotheses
Ref Expression
rrgnz.t 𝐸 = (RLReg‘𝑅)
rrgnz.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgnz (𝑅 ∈ NzRing → ¬ 0𝐸)

Proof of Theorem rrgnz
StepHypRef Expression
1 eqid 2206 . . . 4 (1r𝑅) = (1r𝑅)
2 rrgnz.z . . . 4 0 = (0g𝑅)
31, 2nzrnz 14014 . . 3 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
43neneqd 2398 . 2 (𝑅 ∈ NzRing → ¬ (1r𝑅) = 0 )
5 nzrring 14015 . . . 4 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
65adantr 276 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → 𝑅 ∈ Ring)
7 simpr 110 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → 0𝐸)
8 eqid 2206 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1ringidcl 13852 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
106, 9syl 14 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → (1r𝑅) ∈ (Base‘𝑅))
11 eqid 2206 . . . 4 (.r𝑅) = (.r𝑅)
128, 11, 2, 6, 10ringlzd 13877 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → ( 0 (.r𝑅)(1r𝑅)) = 0 )
13 rrgnz.t . . . . 5 𝐸 = (RLReg‘𝑅)
1413, 8, 11, 2rrgeq0 14097 . . . 4 ((𝑅 ∈ Ring ∧ 0𝐸 ∧ (1r𝑅) ∈ (Base‘𝑅)) → (( 0 (.r𝑅)(1r𝑅)) = 0 ↔ (1r𝑅) = 0 ))
1514biimpa 296 . . 3 (((𝑅 ∈ Ring ∧ 0𝐸 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ ( 0 (.r𝑅)(1r𝑅)) = 0 ) → (1r𝑅) = 0 )
166, 7, 10, 12, 15syl31anc 1253 . 2 ((𝑅 ∈ NzRing ∧ 0𝐸) → (1r𝑅) = 0 )
174, 16mtand 667 1 (𝑅 ∈ NzRing → ¬ 0𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cfv 5279  (class class class)co 5956  Basecbs 12902  .rcmulr 12980  0gc0g 13158  1rcur 13791  Ringcrg 13828  NzRingcnzr 14011  RLRegcrlreg 14087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-mgp 13753  df-ur 13792  df-ring 13830  df-nzr 14012  df-rlreg 14090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator