ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsubaddd GIF version

Theorem ltsubaddd 8214
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ltsubaddd (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))

Proof of Theorem ltsubaddd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 ltsubadd 8106 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1197 1 (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1461   class class class wbr 3893  (class class class)co 5726  cr 7539   + caddc 7543   < clt 7717  cmin 7849
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-addcom 7638  ax-addass 7640  ax-distr 7642  ax-i2m1 7643  ax-0id 7646  ax-rnegex 7647  ax-cnre 7649  ax-pre-ltadd 7654
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7719  df-mnf 7720  df-ltxr 7722  df-sub 7851  df-neg 7852
This theorem is referenced by:  sublt0d  8243  ltaddsublt  8244  suprzclex  9046  q2submod  10044  modsumfzodifsn  10055  expnbnd  10301  climrecvg1n  11002  hashdvds  11735
  Copyright terms: Public domain W3C validator