ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negnegd GIF version

Theorem negnegd 8261
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
negnegd (𝜑 → --𝐴 = 𝐴)

Proof of Theorem negnegd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 negneg 8209 . 2 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
31, 2syl 14 1 (𝜑 → --𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cc 7811  -cneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by:  ltnegcon1  8422  ltnegcon2  8423  lenegcon1  8425  lenegcon2  8426  recexre  8537  zaddcllemneg  9294  zeo  9360  zindd  9373  infrenegsupex  9596  supinfneg  9597  infsupneg  9598  supminfex  9599  negm  9617  xnegneg  9835  ceilid  10317  expnegap0  10530  expaddzaplem  10565  expaddzap  10566  cjcj  10894  negfi  11238  minabs  11246  minclpr  11247  mingeb  11252  sincossq  11758  infssuzex  11952  zsupssdc  11957  pcid  12325  4sqlem10  12387  znnen  12401  mulgnegnn  12998  mulgsubcl  13002  mulgneg  13006  mulgz  13016  mulgass  13025  ptolemy  14284  lgsdir2lem4  14471
  Copyright terms: Public domain W3C validator