![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negnegd | GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 8271 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ℂcc 7872 -cneg 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-neg 8195 |
This theorem is referenced by: ltnegcon1 8484 ltnegcon2 8485 lenegcon1 8487 lenegcon2 8488 recexre 8599 zaddcllemneg 9359 zeo 9425 zindd 9438 infrenegsupex 9662 supinfneg 9663 infsupneg 9664 supminfex 9665 negm 9683 xnegneg 9902 ceilid 10389 expnegap0 10621 expaddzaplem 10656 expaddzap 10657 cjcj 11030 negfi 11374 minabs 11382 minclpr 11383 mingeb 11388 sincossq 11894 infssuzex 12089 zsupssdc 12094 pcid 12465 4sqlem10 12528 znnen 12558 mulgnegnn 13205 mulgsubcl 13209 mulgneg 13213 mulgz 13223 mulgass 13232 ghmmulg 13329 ptolemy 15000 lgsdir2lem4 15188 |
Copyright terms: Public domain | W3C validator |