| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negnegd | GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 8322 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ℂcc 7923 -cneg 8244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 |
| This theorem is referenced by: ltnegcon1 8536 ltnegcon2 8537 lenegcon1 8539 lenegcon2 8540 recexre 8651 zaddcllemneg 9411 zeo 9478 zindd 9491 infrenegsupex 9715 supinfneg 9716 infsupneg 9717 supminfex 9718 negm 9736 xnegneg 9955 infssuzex 10376 zsupssdc 10381 ceilid 10460 expnegap0 10692 expaddzaplem 10727 expaddzap 10728 cjcj 11194 negfi 11539 minabs 11547 minclpr 11548 mingeb 11553 sincossq 12059 pcid 12647 4sqlem10 12710 znnen 12769 mulgnegnn 13468 mulgsubcl 13472 mulgneg 13476 mulgz 13486 mulgass 13495 ghmmulg 13592 ptolemy 15296 lgsdir2lem4 15508 |
| Copyright terms: Public domain | W3C validator |