![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negnegd | GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 7883 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 ℂcc 7498 -cneg 7805 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-setind 4390 ax-resscn 7587 ax-1cn 7588 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-sub 7806 df-neg 7807 |
This theorem is referenced by: ltnegcon1 8092 ltnegcon2 8093 lenegcon1 8095 lenegcon2 8096 recexre 8206 zaddcllemneg 8945 zeo 9008 zindd 9021 infrenegsupex 9239 supinfneg 9240 infsupneg 9241 supminfex 9242 negm 9257 xnegneg 9457 ceilid 9929 expnegap0 10142 expaddzaplem 10177 expaddzap 10178 cjcj 10496 negfi 10838 minabs 10846 minclpr 10847 sincossq 11253 infssuzex 11437 znnen 11703 |
Copyright terms: Public domain | W3C validator |