| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negnegd | GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 8321 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ℂcc 7922 -cneg 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-neg 8245 |
| This theorem is referenced by: ltnegcon1 8535 ltnegcon2 8536 lenegcon1 8538 lenegcon2 8539 recexre 8650 zaddcllemneg 9410 zeo 9477 zindd 9490 infrenegsupex 9714 supinfneg 9715 infsupneg 9716 supminfex 9717 negm 9735 xnegneg 9954 infssuzex 10374 zsupssdc 10379 ceilid 10458 expnegap0 10690 expaddzaplem 10725 expaddzap 10726 cjcj 11165 negfi 11510 minabs 11518 minclpr 11519 mingeb 11524 sincossq 12030 pcid 12618 4sqlem10 12681 znnen 12740 mulgnegnn 13439 mulgsubcl 13443 mulgneg 13447 mulgz 13457 mulgass 13466 ghmmulg 13563 ptolemy 15267 lgsdir2lem4 15479 |
| Copyright terms: Public domain | W3C validator |