![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abs2difabs | GIF version |
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2difabs | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abs2dif 10593 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) | |
2 | 1 | ancoms 265 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
3 | abscl 10538 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
4 | 3 | recnd 7570 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
5 | abscl 10538 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ) | |
6 | 5 | recnd 7570 | . . . 4 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℂ) |
7 | negsubdi2 7795 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴))) | |
8 | 4, 6, 7 | syl2an 284 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴))) |
9 | abssub 10588 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | |
10 | 2, 8, 9 | 3brtr4d 3881 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
11 | abs2dif 10593 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) | |
12 | resubcl 7800 | . . . . 5 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ) | |
13 | 3, 5, 12 | syl2an 284 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ) |
14 | subcl 7735 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
15 | abscl 10538 | . . . . 5 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | |
16 | 14, 15 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
17 | absle 10576 | . . . 4 ⊢ ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) | |
18 | 13, 16, 17 | syl2anc 404 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
19 | lenegcon1 7998 | . . . . 5 ⊢ ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ↔ -(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)))) | |
20 | 13, 16, 19 | syl2anc 404 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ↔ -(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)))) |
21 | 20 | anbi1d 454 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
22 | 18, 21 | bitr4d 190 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
23 | 10, 11, 22 | mpbir2and 891 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1290 ∈ wcel 1439 class class class wbr 3851 ‘cfv 5028 (class class class)co 5666 ℂcc 7402 ℝcr 7403 ≤ cle 7577 − cmin 7707 -cneg 7708 abscabs 10484 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-mulrcl 7498 ax-addcom 7499 ax-mulcom 7500 ax-addass 7501 ax-mulass 7502 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-1rid 7506 ax-0id 7507 ax-rnegex 7508 ax-precex 7509 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-apti 7514 ax-pre-ltadd 7515 ax-pre-mulgt0 7516 ax-pre-mulext 7517 ax-arch 7518 ax-caucvg 7519 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-reap 8106 df-ap 8113 df-div 8194 df-inn 8477 df-2 8535 df-3 8536 df-4 8537 df-n0 8728 df-z 8805 df-uz 9074 df-rp 9189 df-iseq 9907 df-seq3 9908 df-exp 10009 df-cj 10330 df-re 10331 df-im 10332 df-rsqrt 10485 df-abs 10486 |
This theorem is referenced by: abs2difabsd 10686 abscn2 10757 |
Copyright terms: Public domain | W3C validator |