ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemf1 GIF version

Theorem resqrexlemf1 10406
Description: Lemma for resqrex 10424. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemf1 (𝜑 → (𝐹‘1) = (1 + 𝐴))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
21fveq1i 5290 . . 3 (𝐹‘1) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘1)
3 1zzd 8747 . . . 4 (𝜑 → 1 ∈ ℤ)
4 elnnuz 9024 . . . . 5 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
5 resqrexlemex.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
6 resqrexlemex.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
75, 6resqrexlem1arp 10403 . . . . 5 ((𝜑𝑎 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
84, 7sylan2br 282 . . . 4 ((𝜑𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
95, 6resqrexlemp1rp 10404 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
103, 8, 9seq3-1 9842 . . 3 (𝜑 → (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘1) = ((ℕ × {(1 + 𝐴)})‘1))
112, 10syl5eq 2132 . 2 (𝜑 → (𝐹‘1) = ((ℕ × {(1 + 𝐴)})‘1))
12 1red 7482 . . . 4 (𝜑 → 1 ∈ ℝ)
1312, 5readdcld 7496 . . 3 (𝜑 → (1 + 𝐴) ∈ ℝ)
14 1nn 8405 . . 3 1 ∈ ℕ
15 fvconst2g 5493 . . 3 (((1 + 𝐴) ∈ ℝ ∧ 1 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘1) = (1 + 𝐴))
1613, 14, 15sylancl 404 . 2 (𝜑 → ((ℕ × {(1 + 𝐴)})‘1) = (1 + 𝐴))
1711, 16eqtrd 2120 1 (𝜑 → (𝐹‘1) = (1 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wcel 1438  {csn 3441   class class class wbr 3837   × cxp 4426  cfv 5002  (class class class)co 5634  cmpt2 5636  cr 7328  0cc0 7329  1c1 7330   + caddc 7332  cle 7502   / cdiv 8113  cn 8394  2c2 8444  cuz 8988  +crp 9103  seqcseq 9817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-iseq 9818  df-seq3 9819
This theorem is referenced by:  resqrexlemover  10408  resqrexlemlo  10411
  Copyright terms: Public domain W3C validator