ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlbas GIF version

Theorem lidlbas 14110
Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlssbas.l 𝐿 = (LIdeal‘𝑅)
lidlssbas.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlbas (𝑈𝐿 → (Base‘𝐼) = 𝑈)

Proof of Theorem lidlbas
StepHypRef Expression
1 lidlssbas.i . . . 4 𝐼 = (𝑅s 𝑈)
21a1i 9 . . 3 (𝑈𝐿𝐼 = (𝑅s 𝑈))
3 eqid 2196 . . . 4 (Base‘𝑅) = (Base‘𝑅)
43a1i 9 . . 3 (𝑈𝐿 → (Base‘𝑅) = (Base‘𝑅))
5 lidlssbas.l . . . 4 𝐿 = (LIdeal‘𝑅)
65lidlmex 14107 . . 3 (𝑈𝐿𝑅 ∈ V)
7 id 19 . . 3 (𝑈𝐿𝑈𝐿)
82, 4, 6, 7ressbasd 12770 . 2 (𝑈𝐿 → (𝑈 ∩ (Base‘𝑅)) = (Base‘𝐼))
93, 5lidlss 14108 . . 3 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
10 df-ss 3170 . . 3 (𝑈 ⊆ (Base‘𝑅) ↔ (𝑈 ∩ (Base‘𝑅)) = 𝑈)
119, 10sylib 122 . 2 (𝑈𝐿 → (𝑈 ∩ (Base‘𝑅)) = 𝑈)
128, 11eqtr3d 2231 1 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  LIdealclidl 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-lssm 13985  df-sra 14067  df-rgmod 14068  df-lidl 14101
This theorem is referenced by:  rnglidlmmgm  14128
  Copyright terms: Public domain W3C validator