| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlbas | GIF version | ||
| Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| lidlssbas.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
| lidlssbas.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lidlbas | ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlssbas.i | . . . 4 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝐼 = (𝑅 ↾s 𝑈)) |
| 3 | eqid 2209 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝑅) = (Base‘𝑅)) |
| 5 | lidlssbas.l | . . . 4 ⊢ 𝐿 = (LIdeal‘𝑅) | |
| 6 | 5 | lidlmex 14404 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝑅 ∈ V) |
| 7 | id 19 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ∈ 𝐿) | |
| 8 | 2, 4, 6, 7 | ressbasd 13066 | . 2 ⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ (Base‘𝑅)) = (Base‘𝐼)) |
| 9 | 3, 5 | lidlss 14405 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ⊆ (Base‘𝑅)) |
| 10 | df-ss 3190 | . . 3 ⊢ (𝑈 ⊆ (Base‘𝑅) ↔ (𝑈 ∩ (Base‘𝑅)) = 𝑈) | |
| 11 | 9, 10 | sylib 122 | . 2 ⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ (Base‘𝑅)) = 𝑈) |
| 12 | 8, 11 | eqtr3d 2244 | 1 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∩ cin 3176 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 ↾s cress 12999 LIdealclidl 14396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-lssm 14282 df-sra 14364 df-rgmod 14365 df-lidl 14398 |
| This theorem is referenced by: rnglidlmmgm 14425 |
| Copyright terms: Public domain | W3C validator |