| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlbas | GIF version | ||
| Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| lidlssbas.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
| lidlssbas.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lidlbas | ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlssbas.i | . . . 4 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝐼 = (𝑅 ↾s 𝑈)) |
| 3 | eqid 2196 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝑅) = (Base‘𝑅)) |
| 5 | lidlssbas.l | . . . 4 ⊢ 𝐿 = (LIdeal‘𝑅) | |
| 6 | 5 | lidlmex 14107 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝑅 ∈ V) |
| 7 | id 19 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ∈ 𝐿) | |
| 8 | 2, 4, 6, 7 | ressbasd 12770 | . 2 ⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ (Base‘𝑅)) = (Base‘𝐼)) |
| 9 | 3, 5 | lidlss 14108 | . . 3 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ⊆ (Base‘𝑅)) |
| 10 | df-ss 3170 | . . 3 ⊢ (𝑈 ⊆ (Base‘𝑅) ↔ (𝑈 ∩ (Base‘𝑅)) = 𝑈) | |
| 11 | 9, 10 | sylib 122 | . 2 ⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ (Base‘𝑅)) = 𝑈) |
| 12 | 8, 11 | eqtr3d 2231 | 1 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 ↾s cress 12704 LIdealclidl 14099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-lssm 13985 df-sra 14067 df-rgmod 14068 df-lidl 14101 |
| This theorem is referenced by: rnglidlmmgm 14128 |
| Copyright terms: Public domain | W3C validator |