Step | Hyp | Ref
| Expression |
1 | | oveq1 5885 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) =
(0(.g‘(mulGrp‘ℂfld))𝐴)) |
2 | | oveq2 5886 |
. . . . 5
⊢ (𝑥 = 0 → (𝐴↑𝑥) = (𝐴↑0)) |
3 | 1, 2 | eqeq12d 2192 |
. . . 4
⊢ (𝑥 = 0 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥)
↔ (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))) |
4 | 3 | imbi2d 230 |
. . 3
⊢ (𝑥 = 0 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥))
↔ (𝐴 ∈ ℂ →
(0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)))) |
5 | | oveq1 5885 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝑦(.g‘(mulGrp‘ℂfld))𝐴)) |
6 | | oveq2 5886 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) |
7 | 5, 6 | eqeq12d 2192 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥)
↔ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑦))) |
8 | 7 | imbi2d 230 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥))
↔ (𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑦)))) |
9 | | oveq1 5885 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴)) |
10 | | oveq2 5886 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 1))) |
11 | 9, 10 | eqeq12d 2192 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥)
↔ ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 +
1)))) |
12 | 11 | imbi2d 230 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥))
↔ (𝐴 ∈ ℂ → ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 +
1))))) |
13 | | oveq1 5885 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐵(.g‘(mulGrp‘ℂfld))𝐴)) |
14 | | oveq2 5886 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴↑𝑥) = (𝐴↑𝐵)) |
15 | 13, 14 | eqeq12d 2192 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥)
↔ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵))) |
16 | 15 | imbi2d 230 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑥))
↔ (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)))) |
17 | | cnfldex 13605 |
. . . . . 6
⊢
ℂfld ∈ V |
18 | | eqid 2177 |
. . . . . . 7
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
19 | | cnfldbas 13606 |
. . . . . . 7
⊢ ℂ =
(Base‘ℂfld) |
20 | 18, 19 | mgpbasg 13147 |
. . . . . 6
⊢
(ℂfld ∈ V → ℂ =
(Base‘(mulGrp‘ℂfld))) |
21 | 17, 20 | ax-mp 5 |
. . . . 5
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
22 | | cnfld1 13613 |
. . . . . . 7
⊢ 1 =
(1r‘ℂfld) |
23 | 18, 22 | ringidvalg 13155 |
. . . . . 6
⊢
(ℂfld ∈ V → 1 =
(0g‘(mulGrp‘ℂfld))) |
24 | 17, 23 | ax-mp 5 |
. . . . 5
⊢ 1 =
(0g‘(mulGrp‘ℂfld)) |
25 | | eqid 2177 |
. . . . 5
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
26 | 21, 24, 25 | mulg0 12998 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(0(.g‘(mulGrp‘ℂfld))𝐴) = 1) |
27 | | exp0 10527 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
28 | 26, 27 | eqtr4d 2213 |
. . 3
⊢ (𝐴 ∈ ℂ →
(0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)) |
29 | | oveq1 5885 |
. . . . . 6
⊢ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑦)
→ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴↑𝑦)
· 𝐴)) |
30 | | cnring 13611 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
31 | 18 | ringmgp 13196 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring →
(mulGrp‘ℂfld) ∈ Mnd) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . 9
⊢
(mulGrp‘ℂfld) ∈ Mnd |
33 | | cnfldmul 13608 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℂfld) |
34 | 18, 33 | mgpplusgg 13145 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ V → · =
(+g‘(mulGrp‘ℂfld))) |
35 | 17, 34 | ax-mp 5 |
. . . . . . . . . 10
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
36 | 21, 25, 35 | mulgnn0p1 13004 |
. . . . . . . . 9
⊢
(((mulGrp‘ℂfld) ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐴 ∈ ℂ)
→ ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴)) |
37 | 32, 36 | mp3an1 1324 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0
∧ 𝐴 ∈ ℂ)
→ ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴)) |
38 | 37 | ancoms 268 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴)) |
39 | | expp1 10530 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
40 | 38, 39 | eqeq12d 2192 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)) ↔ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴↑𝑦)
· 𝐴))) |
41 | 29, 40 | imbitrrid 156 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑦)
→ ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 +
1)))) |
42 | 41 | expcom 116 |
. . . 4
⊢ (𝑦 ∈ ℕ0
→ (𝐴 ∈ ℂ
→ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑦)
→ ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 +
1))))) |
43 | 42 | a2d 26 |
. . 3
⊢ (𝑦 ∈ ℕ0
→ ((𝐴 ∈ ℂ
→ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝑦))
→ (𝐴 ∈ ℂ → ((𝑦 +
1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 +
1))))) |
44 | 4, 8, 12, 16, 28, 43 | nn0ind 9370 |
. 2
⊢ (𝐵 ∈ ℕ0
→ (𝐴 ∈ ℂ
→ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵))) |
45 | 44 | impcom 125 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0)
→ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) |