| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsplusgsgrpcl | GIF version | ||
| Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| prdsplusgsgrpcl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdsplusgsgrpcl.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsplusgsgrpcl.p | ⊢ + = (+g‘𝑌) |
| prdsplusgsgrpcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsplusgsgrpcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsplusgsgrpcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) |
| prdsplusgsgrpcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| prdsplusgsgrpcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prdsplusgsgrpcl | ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsplusgsgrpcl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 2 | prdsplusgsgrpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsplusgsgrpcl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdsplusgsgrpcl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsplusgsgrpcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) | |
| 6 | 5 | ffnd 5474 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 7 | prdsplusgsgrpcl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 8 | prdsplusgsgrpcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 9 | prdsplusgsgrpcl.p | . . 3 ⊢ + = (+g‘𝑌) | |
| 10 | 1, 2, 3, 4, 6, 7, 8, 9 | prdsplusgval 13324 | . 2 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
| 11 | 5 | ffvelcdmda 5772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ Smgrp) |
| 12 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 13 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 14 | 6 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 15 | 7 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
| 16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 17 | 1, 2, 12, 13, 14, 15, 16 | prdsbasprj 13323 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
| 18 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
| 19 | 1, 2, 12, 13, 14, 18, 16 | prdsbasprj 13323 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
| 20 | eqid 2229 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
| 21 | eqid 2229 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑥)) = (+g‘(𝑅‘𝑥)) | |
| 22 | 20, 21 | sgrpcl 13450 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ Smgrp ∧ (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥)) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 23 | 11, 17, 19, 22 | syl3anc 1271 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 24 | 23 | ralrimiva 2603 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 25 | 1, 2, 3, 4, 6 | prdsbasmpt 13321 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
| 26 | 24, 25 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
| 27 | 10, 26 | eqeltrd 2306 | 1 ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ↦ cmpt 4145 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Xscprds 13306 Smgrpcsgrp 13442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-hom 13142 df-cco 13143 df-rest 13282 df-topn 13283 df-topgen 13301 df-pt 13302 df-prds 13308 df-mgm 13397 df-sgrp 13443 |
| This theorem is referenced by: prdssgrpd 13456 |
| Copyright terms: Public domain | W3C validator |