| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsplusgsgrpcl | GIF version | ||
| Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| prdsplusgsgrpcl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdsplusgsgrpcl.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsplusgsgrpcl.p | ⊢ + = (+g‘𝑌) |
| prdsplusgsgrpcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsplusgsgrpcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsplusgsgrpcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) |
| prdsplusgsgrpcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| prdsplusgsgrpcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prdsplusgsgrpcl | ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsplusgsgrpcl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 2 | prdsplusgsgrpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsplusgsgrpcl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdsplusgsgrpcl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsplusgsgrpcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) | |
| 6 | 5 | ffnd 5432 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 7 | prdsplusgsgrpcl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 8 | prdsplusgsgrpcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 9 | prdsplusgsgrpcl.p | . . 3 ⊢ + = (+g‘𝑌) | |
| 10 | 1, 2, 3, 4, 6, 7, 8, 9 | prdsplusgval 13159 | . 2 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
| 11 | 5 | ffvelcdmda 5722 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ Smgrp) |
| 12 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 13 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 14 | 6 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 15 | 7 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
| 16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 17 | 1, 2, 12, 13, 14, 15, 16 | prdsbasprj 13158 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
| 18 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
| 19 | 1, 2, 12, 13, 14, 18, 16 | prdsbasprj 13158 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
| 20 | eqid 2206 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
| 21 | eqid 2206 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑥)) = (+g‘(𝑅‘𝑥)) | |
| 22 | 20, 21 | sgrpcl 13285 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ Smgrp ∧ (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥)) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 23 | 11, 17, 19, 22 | syl3anc 1250 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 24 | 23 | ralrimiva 2580 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 25 | 1, 2, 3, 4, 6 | prdsbasmpt 13156 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
| 26 | 24, 25 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
| 27 | 10, 26 | eqeltrd 2283 | 1 ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ↦ cmpt 4109 Fn wfn 5271 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 Xscprds 13141 Smgrpcsgrp 13277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-ixp 6793 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-hom 12977 df-cco 12978 df-rest 13117 df-topn 13118 df-topgen 13136 df-pt 13137 df-prds 13143 df-mgm 13232 df-sgrp 13278 |
| This theorem is referenced by: prdssgrpd 13291 |
| Copyright terms: Public domain | W3C validator |