| Step | Hyp | Ref
| Expression |
| 1 | | simpll 527 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝜑) |
| 2 | | simprll 537 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
| 3 | | simplrl 535 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐾 ∈ Abel) |
| 4 | | simprlr 538 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
| 5 | | rngpropd.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 6 | 5 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
| 7 | 4, 6 | eleqtrd 2275 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘𝐾)) |
| 8 | | simprr 531 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
| 9 | 8, 6 | eleqtrd 2275 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐾)) |
| 10 | | ablgrp 13419 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Abel → 𝐾 ∈ Grp) |
| 11 | | eqid 2196 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 12 | | eqid 2196 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 13 | 11, 12 | grpcl 13140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
| 14 | 10, 13 | syl3an1 1282 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Abel ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
| 15 | 3, 7, 9, 14 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
| 16 | 15, 6 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
| 17 | | rngpropd.4 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 18 | 17 | oveqrspc2v 5949 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
| 19 | 1, 2, 16, 18 | syl12anc 1247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
| 20 | | rngpropd.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 21 | 20 | oveqrspc2v 5949 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
| 22 | 1, 4, 8, 21 | syl12anc 1247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
| 23 | 22 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
| 24 | 19, 23 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
| 25 | | simplrr 536 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (mulGrp‘𝐾) ∈ Smgrp) |
| 26 | 2, 6 | eleqtrd 2275 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘𝐾)) |
| 27 | 3 | elexd 2776 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐾 ∈ V) |
| 28 | | eqid 2196 |
. . . . . . . . . . . . . . . . . . 19
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
| 29 | 28, 11 | mgpbasg 13482 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ V →
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
| 30 | 27, 29 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 31 | 26, 30 | eleqtrd 2275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘(mulGrp‘𝐾))) |
| 32 | 7, 30 | eleqtrd 2275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘(mulGrp‘𝐾))) |
| 33 | | eqid 2196 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾)) |
| 34 | | eqid 2196 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘(mulGrp‘𝐾)) =
(+g‘(mulGrp‘𝐾)) |
| 35 | 33, 34 | sgrpcl 13052 |
. . . . . . . . . . . . . . . 16
⊢
(((mulGrp‘𝐾)
∈ Smgrp ∧ 𝑢 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑣 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾))) |
| 36 | 25, 31, 32, 35 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾))) |
| 37 | | eqid 2196 |
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐾) = (.r‘𝐾) |
| 38 | 28, 37 | mgpplusgg 13480 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ V →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
| 39 | 27, 38 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
| 40 | 39 | oveqd 5939 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(+g‘(mulGrp‘𝐾))𝑣)) |
| 41 | 36, 40, 30 | 3eltr4d 2280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ (Base‘𝐾)) |
| 42 | 41, 6 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ 𝐵) |
| 43 | 9, 30 | eleqtrd 2275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘(mulGrp‘𝐾))) |
| 44 | 33, 34 | sgrpcl 13052 |
. . . . . . . . . . . . . . . 16
⊢
(((mulGrp‘𝐾)
∈ Smgrp ∧ 𝑢 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
| 45 | 25, 31, 43, 44 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
| 46 | 39 | oveqd 5939 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(+g‘(mulGrp‘𝐾))𝑤)) |
| 47 | 45, 46, 30 | 3eltr4d 2280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
| 48 | 47, 6 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ 𝐵) |
| 49 | 20 | oveqrspc2v 5949 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
| 50 | 1, 42, 48, 49 | syl12anc 1247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
| 51 | 17 | oveqrspc2v 5949 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
| 52 | 51 | ad2ant2r 509 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
| 53 | 17 | oveqrspc2v 5949 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
| 54 | 1, 2, 8, 53 | syl12anc 1247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
| 55 | 52, 54 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
| 56 | 50, 55 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
| 57 | 24, 56 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ↔ (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)))) |
| 58 | 11, 12 | grpcl 13140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
| 59 | 10, 58 | syl3an1 1282 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Abel ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
| 60 | 3, 26, 7, 59 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
| 61 | 60, 6 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
| 62 | 17 | oveqrspc2v 5949 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
| 63 | 1, 61, 8, 62 | syl12anc 1247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
| 64 | 20 | oveqrspc2v 5949 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
| 65 | 64 | ad2ant2r 509 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
| 66 | 65 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
| 67 | 63, 66 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
| 68 | 33, 34 | sgrpcl 13052 |
. . . . . . . . . . . . . . . 16
⊢
(((mulGrp‘𝐾)
∈ Smgrp ∧ 𝑣 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
| 69 | 25, 32, 43, 68 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
| 70 | 39 | oveqd 5939 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(+g‘(mulGrp‘𝐾))𝑤)) |
| 71 | 69, 70, 30 | 3eltr4d 2280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
| 72 | 71, 6 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ 𝐵) |
| 73 | 20 | oveqrspc2v 5949 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
| 74 | 1, 48, 72, 73 | syl12anc 1247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
| 75 | 17 | oveqrspc2v 5949 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
| 76 | 1, 4, 8, 75 | syl12anc 1247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
| 77 | 54, 76 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
| 78 | 74, 77 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
| 79 | 67, 78 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) |
| 80 | 57, 79 | anbi12d 473 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 81 | 80 | anassrs 400 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 82 | 81 | ralbidva 2493 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 83 | 82 | 2ralbidva 2519 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 84 | 5 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐾)) |
| 85 | 84 | raleqdv 2699 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
| 86 | 84, 85 | raleqbidv 2709 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
| 87 | 84, 86 | raleqbidv 2709 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
| 88 | | rngpropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 89 | 88 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐿)) |
| 90 | 89 | raleqdv 2699 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 91 | 89, 90 | raleqbidv 2709 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 92 | 89, 91 | raleqbidv 2709 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 93 | 83, 87, 92 | 3bitr3d 218 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 94 | 93 | pm5.32da 452 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
| 95 | | df-3an 982 |
. . . 4
⊢ ((𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
| 96 | | df-3an 982 |
. . . 4
⊢ ((𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 97 | 94, 95, 96 | 3bitr4g 223 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
| 98 | | simp1 999 |
. . . . 5
⊢ ((𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) → 𝐾 ∈ Abel) |
| 99 | 98 | a1i 9 |
. . . 4
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) → 𝐾 ∈ Abel)) |
| 100 | | simp1 999 |
. . . . 5
⊢ ((𝐿 ∈ Abel ∧
(mulGrp‘𝐿) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) → 𝐿 ∈ Abel) |
| 101 | 5, 88, 20 | ablpropd 13426 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| 102 | 100, 101 | imbitrrid 156 |
. . . 4
⊢ (𝜑 → ((𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) → 𝐾 ∈ Abel)) |
| 103 | 101 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| 104 | 28 | mgpex 13481 |
. . . . . . . 8
⊢ (𝐾 ∈ Abel →
(mulGrp‘𝐾) ∈
V) |
| 105 | 104 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (mulGrp‘𝐾) ∈ V) |
| 106 | 101 | biimpa 296 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → 𝐿 ∈ Abel) |
| 107 | | eqid 2196 |
. . . . . . . . 9
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
| 108 | 107 | mgpex 13481 |
. . . . . . . 8
⊢ (𝐿 ∈ Abel →
(mulGrp‘𝐿) ∈
V) |
| 109 | 106, 108 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (mulGrp‘𝐿) ∈ V) |
| 110 | | elex 2774 |
. . . . . . . . 9
⊢ (𝐾 ∈ Abel → 𝐾 ∈ V) |
| 111 | 110 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → 𝐾 ∈ V) |
| 112 | 111, 29 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
| 113 | 5 | eqcomd 2202 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) = 𝐵) |
| 114 | 113 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (Base‘𝐾) = 𝐵) |
| 115 | 88 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → 𝐵 = (Base‘𝐿)) |
| 116 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 117 | 107, 116 | mgpbasg 13482 |
. . . . . . . . . 10
⊢ (𝐿 ∈ Abel →
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) |
| 118 | 106, 117 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) |
| 119 | 115, 118 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → 𝐵 = (Base‘(mulGrp‘𝐿))) |
| 120 | 114, 119 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (Base‘𝐾) =
(Base‘(mulGrp‘𝐿))) |
| 121 | 17 | ex 115 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))) |
| 122 | 121 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))) |
| 123 | 5 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐾))) |
| 124 | 5 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
| 125 | 123, 124 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)))) |
| 126 | 125 | bicomd 141 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 127 | 126 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 128 | 111, 38 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
| 129 | 128 | eqcomd 2202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) →
(+g‘(mulGrp‘𝐾)) = (.r‘𝐾)) |
| 130 | 129 | oveqd 5939 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(.r‘𝐾)𝑦)) |
| 131 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝐿) = (.r‘𝐿) |
| 132 | 107, 131 | mgpplusgg 13480 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ Abel →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
| 133 | 106, 132 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
| 134 | 133 | eqcomd 2202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) →
(+g‘(mulGrp‘𝐿)) = (.r‘𝐿)) |
| 135 | 134 | oveqd 5939 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → (𝑥(+g‘(mulGrp‘𝐿))𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 136 | 130, 135 | eqeq12d 2211 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → ((𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) ↔ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))) |
| 137 | 122, 127,
136 | 3imtr4d 203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))) |
| 138 | 137 | imp 124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 139 | 105, 109,
112, 120, 138 | sgrppropd 13056 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → ((mulGrp‘𝐾) ∈ Smgrp ↔
(mulGrp‘𝐿) ∈
Smgrp)) |
| 140 | 103, 139 | 3anbi12d 1324 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ Abel) → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
| 141 | 140 | ex 115 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Abel → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))))) |
| 142 | 99, 102, 141 | pm5.21ndd 706 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
| 143 | 97, 142 | bitrd 188 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
| 144 | 11, 28, 12, 37 | isrng 13490 |
. 2
⊢ (𝐾 ∈ Rng ↔ (𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
| 145 | | eqid 2196 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 146 | 116, 107,
145, 131 | isrng 13490 |
. 2
⊢ (𝐿 ∈ Rng ↔ (𝐿 ∈ Abel ∧
(mulGrp‘𝐿) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
| 147 | 143, 144,
146 | 3bitr4g 223 |
1
⊢ (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng)) |