ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngpropd GIF version

Theorem rngpropd 13309
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
rngpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
rngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
rngpropd (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem rngpropd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝜑)
2 simprll 537 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢𝐵)
3 simplrl 535 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐾 ∈ Abel)
4 simprlr 538 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣𝐵)
5 rngpropd.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (Base‘𝐾))
65ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐵 = (Base‘𝐾))
74, 6eleqtrd 2268 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣 ∈ (Base‘𝐾))
8 simprr 531 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤𝐵)
98, 6eleqtrd 2268 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤 ∈ (Base‘𝐾))
10 ablgrp 13228 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Abel → 𝐾 ∈ Grp)
11 eqid 2189 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2189 . . . . . . . . . . . . . . . . 17 (+g𝐾) = (+g𝐾)
1311, 12grpcl 12953 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1410, 13syl3an1 1282 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Abel ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
153, 7, 9, 14syl3anc 1249 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1615, 6eleqtrrd 2269 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
17 rngpropd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
1817oveqrspc2v 5923 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
191, 2, 16, 18syl12anc 1247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
20 rngpropd.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2120oveqrspc2v 5923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
221, 4, 8, 21syl12anc 1247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
2322oveq2d 5912 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
2419, 23eqtrd 2222 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
25 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (mulGrp‘𝐾) ∈ Smgrp)
262, 6eleqtrd 2268 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢 ∈ (Base‘𝐾))
273elexd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐾 ∈ V)
28 eqid 2189 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2928, 11mgpbasg 13280 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ V → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
3027, 29syl 14 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
3126, 30eleqtrd 2268 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢 ∈ (Base‘(mulGrp‘𝐾)))
327, 30eleqtrd 2268 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣 ∈ (Base‘(mulGrp‘𝐾)))
33 eqid 2189 . . . . . . . . . . . . . . . . 17 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
34 eqid 2189 . . . . . . . . . . . . . . . . 17 (+g‘(mulGrp‘𝐾)) = (+g‘(mulGrp‘𝐾))
3533, 34sgrpcl 12872 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑢 ∈ (Base‘(mulGrp‘𝐾)) ∧ 𝑣 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾)))
3625, 31, 32, 35syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾)))
37 eqid 2189 . . . . . . . . . . . . . . . . . 18 (.r𝐾) = (.r𝐾)
3828, 37mgpplusgg 13278 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ V → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
3927, 38syl 14 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
4039oveqd 5913 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(+g‘(mulGrp‘𝐾))𝑣))
4136, 40, 303eltr4d 2273 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
4241, 6eleqtrrd 2269 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ 𝐵)
439, 30eleqtrd 2268 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤 ∈ (Base‘(mulGrp‘𝐾)))
4433, 34sgrpcl 12872 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑢 ∈ (Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾)))
4525, 31, 43, 44syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾)))
4639oveqd 5913 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(+g‘(mulGrp‘𝐾))𝑤))
4745, 46, 303eltr4d 2273 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
4847, 6eleqtrrd 2269 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ 𝐵)
4920oveqrspc2v 5923 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
501, 42, 48, 49syl12anc 1247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
5117oveqrspc2v 5923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
5251ad2ant2r 509 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
5317oveqrspc2v 5923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
541, 2, 8, 53syl12anc 1247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
5552, 54oveq12d 5914 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
5650, 55eqtrd 2222 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
5724, 56eqeq12d 2204 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ↔ (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤))))
5811, 12grpcl 12953 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
5910, 58syl3an1 1282 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Abel ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
603, 26, 7, 59syl3anc 1249 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
6160, 6eleqtrrd 2269 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
6217oveqrspc2v 5923 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
631, 61, 8, 62syl12anc 1247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
6420oveqrspc2v 5923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
6564ad2ant2r 509 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
6665oveq1d 5911 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
6763, 66eqtrd 2222 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
6833, 34sgrpcl 12872 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑣 ∈ (Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾)))
6925, 32, 43, 68syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾)))
7039oveqd 5913 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(+g‘(mulGrp‘𝐾))𝑤))
7169, 70, 303eltr4d 2273 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
7271, 6eleqtrrd 2269 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ 𝐵)
7320oveqrspc2v 5923 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
741, 48, 72, 73syl12anc 1247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
7517oveqrspc2v 5923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
761, 4, 8, 75syl12anc 1247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
7754, 76oveq12d 5914 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
7874, 77eqtrd 2222 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
7967, 78eqeq12d 2204 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))
8057, 79anbi12d 473 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8180anassrs 400 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8281ralbidva 2486 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
83822ralbidva 2512 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
845adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐾))
8584raleqdv 2692 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
8684, 85raleqbidv 2698 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
8784, 86raleqbidv 2698 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
88 rngpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
8988adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐿))
9089raleqdv 2692 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9189, 90raleqbidv 2698 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9289, 91raleqbidv 2698 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9383, 87, 923bitr3d 218 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9493pm5.32da 452 . . . 4 (𝜑 → (((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
95 df-3an 982 . . . 4 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
96 df-3an 982 . . . 4 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9794, 95, 963bitr4g 223 . . 3 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
98 simp1 999 . . . . 5 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) → 𝐾 ∈ Abel)
9998a1i 9 . . . 4 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) → 𝐾 ∈ Abel))
100 simp1 999 . . . . 5 ((𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) → 𝐿 ∈ Abel)
1015, 88, 20ablpropd 13235 . . . . 5 (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
102100, 101imbitrrid 156 . . . 4 (𝜑 → ((𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) → 𝐾 ∈ Abel))
103101adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Abel) → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
10428mgpex 13279 . . . . . . . 8 (𝐾 ∈ Abel → (mulGrp‘𝐾) ∈ V)
105104adantl 277 . . . . . . 7 ((𝜑𝐾 ∈ Abel) → (mulGrp‘𝐾) ∈ V)
106101biimpa 296 . . . . . . . 8 ((𝜑𝐾 ∈ Abel) → 𝐿 ∈ Abel)
107 eqid 2189 . . . . . . . . 9 (mulGrp‘𝐿) = (mulGrp‘𝐿)
108107mgpex 13279 . . . . . . . 8 (𝐿 ∈ Abel → (mulGrp‘𝐿) ∈ V)
109106, 108syl 14 . . . . . . 7 ((𝜑𝐾 ∈ Abel) → (mulGrp‘𝐿) ∈ V)
110 elex 2763 . . . . . . . . 9 (𝐾 ∈ Abel → 𝐾 ∈ V)
111110adantl 277 . . . . . . . 8 ((𝜑𝐾 ∈ Abel) → 𝐾 ∈ V)
112111, 29syl 14 . . . . . . 7 ((𝜑𝐾 ∈ Abel) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
1135eqcomd 2195 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = 𝐵)
114113adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Abel) → (Base‘𝐾) = 𝐵)
11588adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Abel) → 𝐵 = (Base‘𝐿))
116 eqid 2189 . . . . . . . . . . 11 (Base‘𝐿) = (Base‘𝐿)
117107, 116mgpbasg 13280 . . . . . . . . . 10 (𝐿 ∈ Abel → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
118106, 117syl 14 . . . . . . . . 9 ((𝜑𝐾 ∈ Abel) → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
119115, 118eqtrd 2222 . . . . . . . 8 ((𝜑𝐾 ∈ Abel) → 𝐵 = (Base‘(mulGrp‘𝐿)))
120114, 119eqtrd 2222 . . . . . . 7 ((𝜑𝐾 ∈ Abel) → (Base‘𝐾) = (Base‘(mulGrp‘𝐿)))
12117ex 115 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
122121adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Abel) → ((𝑥𝐵𝑦𝐵) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
1235eleq2d 2259 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
1245eleq2d 2259 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
125123, 124anbi12d 473 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
126125bicomd 141 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥𝐵𝑦𝐵)))
127126adantr 276 . . . . . . . . 9 ((𝜑𝐾 ∈ Abel) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥𝐵𝑦𝐵)))
128111, 38syl 14 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ Abel) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
129128eqcomd 2195 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Abel) → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
130129oveqd 5913 . . . . . . . . . 10 ((𝜑𝐾 ∈ Abel) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(.r𝐾)𝑦))
131 eqid 2189 . . . . . . . . . . . . . 14 (.r𝐿) = (.r𝐿)
132107, 131mgpplusgg 13278 . . . . . . . . . . . . 13 (𝐿 ∈ Abel → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
133106, 132syl 14 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ Abel) → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
134133eqcomd 2195 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Abel) → (+g‘(mulGrp‘𝐿)) = (.r𝐿))
135134oveqd 5913 . . . . . . . . . 10 ((𝜑𝐾 ∈ Abel) → (𝑥(+g‘(mulGrp‘𝐿))𝑦) = (𝑥(.r𝐿)𝑦))
136130, 135eqeq12d 2204 . . . . . . . . 9 ((𝜑𝐾 ∈ Abel) → ((𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) ↔ (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
137122, 127, 1363imtr4d 203 . . . . . . . 8 ((𝜑𝐾 ∈ Abel) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)))
138137imp 124 . . . . . . 7 (((𝜑𝐾 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
139105, 109, 112, 120, 138sgrppropd 12876 . . . . . 6 ((𝜑𝐾 ∈ Abel) → ((mulGrp‘𝐾) ∈ Smgrp ↔ (mulGrp‘𝐿) ∈ Smgrp))
140103, 1393anbi12d 1324 . . . . 5 ((𝜑𝐾 ∈ Abel) → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
141140ex 115 . . . 4 (𝜑 → (𝐾 ∈ Abel → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))))
14299, 102, 141pm5.21ndd 706 . . 3 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
14397, 142bitrd 188 . 2 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
14411, 28, 12, 37isrng 13288 . 2 (𝐾 ∈ Rng ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
145 eqid 2189 . . 3 (+g𝐿) = (+g𝐿)
146116, 107, 145, 131isrng 13288 . 2 (𝐿 ∈ Rng ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
147143, 144, 1463bitr4g 223 1 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752  cfv 5235  (class class class)co 5896  Basecbs 12512  +gcplusg 12589  .rcmulr 12590  Smgrpcsgrp 12864  Grpcgrp 12945  Abelcabl 13224  mulGrpcmgp 13274  Rngcrng 13286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-plusg 12602  df-mulr 12603  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-cmn 13225  df-abl 13226  df-mgp 13275  df-rng 13287
This theorem is referenced by:  opprrngbg  13428  subrngpropd  13563
  Copyright terms: Public domain W3C validator