ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtxex GIF version

Theorem vtxex 15827
Description: Applying the vertex function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
Assertion
Ref Expression
vtxex (𝐺𝑉 → (Vtx‘𝐺) ∈ V)

Proof of Theorem vtxex
StepHypRef Expression
1 vtxvalg 15825 . 2 (𝐺𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
2 1stexg 6319 . . 3 (𝐺𝑉 → (1st𝐺) ∈ V)
3 basfn 13099 . . . 4 Base Fn V
4 elex 2811 . . . 4 (𝐺𝑉𝐺 ∈ V)
5 funfvex 5646 . . . . 5 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
65funfni 5423 . . . 4 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
73, 4, 6sylancr 414 . . 3 (𝐺𝑉 → (Base‘𝐺) ∈ V)
82, 7ifexd 4575 . 2 (𝐺𝑉 → if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) ∈ V)
91, 8eqeltrd 2306 1 (𝐺𝑉 → (Vtx‘𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  ifcif 3602   × cxp 4717   Fn wfn 5313  cfv 5318  1st c1st 6290  Basecbs 13040  Vtxcvtx 15821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6292  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-vtx 15823
This theorem is referenced by:  isuhgrm  15879  isushgrm  15880  uhgrunop  15895  incistruhgr  15898  isupgren  15903  upgrop  15912  isumgren  15913  upgrunop  15933  umgrunop  15935  isuspgren  15963  isusgren  15964  usgrop  15972  usgrausgrien  15975  ausgrumgrien  15976  ausgrusgrien  15977  usgredg2v  16030  usgriedgdomord  16031  uspgredgdomord  16035  wksfval  16043  wlkex  16046
  Copyright terms: Public domain W3C validator