Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0cnv Structured version   Visualization version   GIF version

Theorem 0cnv 45733
Description: If is a complex number, then it converges to itself. See 0ncn 11062 and its comment; see also the comment in climlimsupcex 45760. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
0cnv (∅ ∈ ℂ → ∅ ⇝ ∅)

Proof of Theorem 0cnv
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (∅ ∈ ℂ → ∅ ∈ ℂ)
2 0zd 12517 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ)
3 simpl 482 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ)
4 subid 11417 . . . . . . . . . . 11 (∅ ∈ ℂ → (∅ − ∅) = 0)
54fveq2d 6844 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0))
6 abs0 15227 . . . . . . . . . . 11 (abs‘0) = 0
76a1i 11 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘0) = 0)
85, 7eqtrd 2764 . . . . . . . . 9 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0)
98adantr 480 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0)
10 rpgt0 12940 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1110adantl 481 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥)
129, 11eqbrtrd 5124 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥)
133, 12jca 511 . . . . . 6 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1413ralrimivw 3129 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
15 fveq2 6840 . . . . . . 7 (𝑚 = 0 → (ℤ𝑚) = (ℤ‘0))
1615raleqdv 3296 . . . . . 6 (𝑚 = 0 → (∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
1716rspcev 3585 . . . . 5 ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
182, 14, 17syl2anc 584 . . . 4 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1918ralrimiva 3125 . . 3 (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
201, 19jca 511 . 2 (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
21 0ex 5257 . . . . 5 ∅ ∈ V
2221a1i 11 . . . 4 (⊤ → ∅ ∈ V)
23 0fv 6884 . . . . 5 (∅‘𝑘) = ∅
2423a1i 11 . . . 4 ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅)
2522, 24clim 15436 . . 3 (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))))
2625mptru 1547 . 2 (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
2720, 26sylibr 234 1 (∅ ∈ ℂ → ∅ ⇝ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   < clt 11184  cmin 11381  cz 12505  cuz 12769  +crp 12927  abscabs 15176  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430
This theorem is referenced by:  climlimsupcex  45760
  Copyright terms: Public domain W3C validator