| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnv | Structured version Visualization version GIF version | ||
| Description: If ∅ is a complex number, then it converges to itself. See 0ncn 11086 and its comment; see also the comment in climlimsupcex 45767. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 0cnv | ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (∅ ∈ ℂ → ∅ ∈ ℂ) | |
| 2 | 0zd 12541 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ) | |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ) | |
| 4 | subid 11441 | . . . . . . . . . . 11 ⊢ (∅ ∈ ℂ → (∅ − ∅) = 0) | |
| 5 | 4 | fveq2d 6862 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0)) |
| 6 | abs0 15251 | . . . . . . . . . . 11 ⊢ (abs‘0) = 0 | |
| 7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘0) = 0) |
| 8 | 5, 7 | eqtrd 2764 | . . . . . . . . 9 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0) |
| 10 | rpgt0 12964 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
| 12 | 9, 11 | eqbrtrd 5129 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥) |
| 13 | 3, 12 | jca 511 | . . . . . 6 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 14 | 13 | ralrimivw 3129 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 15 | fveq2 6858 | . . . . . . 7 ⊢ (𝑚 = 0 → (ℤ≥‘𝑚) = (ℤ≥‘0)) | |
| 16 | 15 | raleqdv 3299 | . . . . . 6 ⊢ (𝑚 = 0 → (∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
| 17 | 16 | rspcev 3588 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 18 | 2, 14, 17 | syl2anc 584 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 19 | 18 | ralrimiva 3125 | . . 3 ⊢ (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 20 | 1, 19 | jca 511 | . 2 ⊢ (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
| 21 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
| 23 | 0fv 6902 | . . . . 5 ⊢ (∅‘𝑘) = ∅ | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅) |
| 25 | 22, 24 | clim 15460 | . . 3 ⊢ (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))) |
| 26 | 25 | mptru 1547 | . 2 ⊢ (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
| 27 | 20, 26 | sylibr 234 | 1 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 < clt 11208 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 abscabs 15200 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 |
| This theorem is referenced by: climlimsupcex 45767 |
| Copyright terms: Public domain | W3C validator |