Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0cnv Structured version   Visualization version   GIF version

Theorem 0cnv 43237
Description: If is a complex number, then it converges to itself. See 0ncn 10873 and its comment; see also the comment in climlimsupcex 43264. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
0cnv (∅ ∈ ℂ → ∅ ⇝ ∅)

Proof of Theorem 0cnv
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (∅ ∈ ℂ → ∅ ∈ ℂ)
2 0zd 12314 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ)
3 simpl 482 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ)
4 subid 11223 . . . . . . . . . . 11 (∅ ∈ ℂ → (∅ − ∅) = 0)
54fveq2d 6772 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0))
6 abs0 14978 . . . . . . . . . . 11 (abs‘0) = 0
76a1i 11 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘0) = 0)
85, 7eqtrd 2779 . . . . . . . . 9 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0)
98adantr 480 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0)
10 rpgt0 12724 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1110adantl 481 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥)
129, 11eqbrtrd 5100 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥)
133, 12jca 511 . . . . . 6 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1413ralrimivw 3110 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
15 fveq2 6768 . . . . . . 7 (𝑚 = 0 → (ℤ𝑚) = (ℤ‘0))
1615raleqdv 3346 . . . . . 6 (𝑚 = 0 → (∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
1716rspcev 3560 . . . . 5 ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
182, 14, 17syl2anc 583 . . . 4 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1918ralrimiva 3109 . . 3 (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
201, 19jca 511 . 2 (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
21 0ex 5234 . . . . 5 ∅ ∈ V
2221a1i 11 . . . 4 (⊤ → ∅ ∈ V)
23 0fv 6807 . . . . 5 (∅‘𝑘) = ∅
2423a1i 11 . . . 4 ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅)
2522, 24clim 15184 . . 3 (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))))
2625mptru 1548 . 2 (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
2720, 26sylibr 233 1 (∅ ∈ ℂ → ∅ ⇝ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wtru 1542  wcel 2109  wral 3065  wrex 3066  Vcvv 3430  c0 4261   class class class wbr 5078  cfv 6430  (class class class)co 7268  cc 10853  0cc0 10855   < clt 10993  cmin 11188  cz 12302  cuz 12564  +crp 12712  abscabs 14926  cli 15174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178
This theorem is referenced by:  climlimsupcex  43264
  Copyright terms: Public domain W3C validator