Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnv | Structured version Visualization version GIF version |
Description: If ∅ is a complex number, then it converges to itself. See 0ncn 10935 and its comment; see also the comment in climlimsupcex 43359. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
0cnv | ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (∅ ∈ ℂ → ∅ ∈ ℂ) | |
2 | 0zd 12377 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ) | |
3 | simpl 484 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ) | |
4 | subid 11286 | . . . . . . . . . . 11 ⊢ (∅ ∈ ℂ → (∅ − ∅) = 0) | |
5 | 4 | fveq2d 6808 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0)) |
6 | abs0 15042 | . . . . . . . . . . 11 ⊢ (abs‘0) = 0 | |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘0) = 0) |
8 | 5, 7 | eqtrd 2776 | . . . . . . . . 9 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0) |
9 | 8 | adantr 482 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0) |
10 | rpgt0 12788 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
11 | 10 | adantl 483 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
12 | 9, 11 | eqbrtrd 5103 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥) |
13 | 3, 12 | jca 513 | . . . . . 6 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
14 | 13 | ralrimivw 3144 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
15 | fveq2 6804 | . . . . . . 7 ⊢ (𝑚 = 0 → (ℤ≥‘𝑚) = (ℤ≥‘0)) | |
16 | 15 | raleqdv 3360 | . . . . . 6 ⊢ (𝑚 = 0 → (∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
17 | 16 | rspcev 3566 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
18 | 2, 14, 17 | syl2anc 585 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
19 | 18 | ralrimiva 3140 | . . 3 ⊢ (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
20 | 1, 19 | jca 513 | . 2 ⊢ (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
21 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
23 | 0fv 6845 | . . . . 5 ⊢ (∅‘𝑘) = ∅ | |
24 | 23 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅) |
25 | 22, 24 | clim 15248 | . . 3 ⊢ (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))) |
26 | 25 | mptru 1546 | . 2 ⊢ (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
27 | 20, 26 | sylibr 233 | 1 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 Vcvv 3437 ∅c0 4262 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 < clt 11055 − cmin 11251 ℤcz 12365 ℤ≥cuz 12628 ℝ+crp 12776 abscabs 14990 ⇝ cli 15238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 |
This theorem is referenced by: climlimsupcex 43359 |
Copyright terms: Public domain | W3C validator |