| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnv | Structured version Visualization version GIF version | ||
| Description: If ∅ is a complex number, then it converges to itself. See 0ncn 11152 and its comment; see also the comment in climlimsupcex 45765. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| 0cnv | ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (∅ ∈ ℂ → ∅ ∈ ℂ) | |
| 2 | 0zd 12605 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ) | |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ) | |
| 4 | subid 11507 | . . . . . . . . . . 11 ⊢ (∅ ∈ ℂ → (∅ − ∅) = 0) | |
| 5 | 4 | fveq2d 6885 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0)) |
| 6 | abs0 15309 | . . . . . . . . . . 11 ⊢ (abs‘0) = 0 | |
| 7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘0) = 0) |
| 8 | 5, 7 | eqtrd 2771 | . . . . . . . . 9 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0) |
| 10 | rpgt0 13026 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
| 12 | 9, 11 | eqbrtrd 5146 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥) |
| 13 | 3, 12 | jca 511 | . . . . . 6 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 14 | 13 | ralrimivw 3137 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 15 | fveq2 6881 | . . . . . . 7 ⊢ (𝑚 = 0 → (ℤ≥‘𝑚) = (ℤ≥‘0)) | |
| 16 | 15 | raleqdv 3309 | . . . . . 6 ⊢ (𝑚 = 0 → (∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
| 17 | 16 | rspcev 3606 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 18 | 2, 14, 17 | syl2anc 584 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 19 | 18 | ralrimiva 3133 | . . 3 ⊢ (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
| 20 | 1, 19 | jca 511 | . 2 ⊢ (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
| 21 | 0ex 5282 | . . . . 5 ⊢ ∅ ∈ V | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
| 23 | 0fv 6925 | . . . . 5 ⊢ (∅‘𝑘) = ∅ | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅) |
| 25 | 22, 24 | clim 15515 | . . 3 ⊢ (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))) |
| 26 | 25 | mptru 1547 | . 2 ⊢ (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
| 27 | 20, 26 | sylibr 234 | 1 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∅c0 4313 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 < clt 11274 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ℝ+crp 13013 abscabs 15258 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 |
| This theorem is referenced by: climlimsupcex 45765 |
| Copyright terms: Public domain | W3C validator |