Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0cnv Structured version   Visualization version   GIF version

Theorem 0cnv 42012
Description: If (/) is a complex number, then it converges to itself. (see 0ncn 10547 and its comment ; see also the comment in climlimsupcex 42039) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
0cnv (∅ ∈ ℂ → ∅ ⇝ ∅)

Proof of Theorem 0cnv
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (∅ ∈ ℂ → ∅ ∈ ℂ)
2 0zd 11985 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ)
3 simpl 485 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ)
4 subid 10897 . . . . . . . . . . 11 (∅ ∈ ℂ → (∅ − ∅) = 0)
54fveq2d 6667 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0))
6 abs0 14637 . . . . . . . . . . 11 (abs‘0) = 0
76a1i 11 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘0) = 0)
85, 7eqtrd 2854 . . . . . . . . 9 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0)
98adantr 483 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0)
10 rpgt0 12393 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1110adantl 484 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥)
129, 11eqbrtrd 5079 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥)
133, 12jca 514 . . . . . 6 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1413ralrimivw 3181 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
15 fveq2 6663 . . . . . . 7 (𝑚 = 0 → (ℤ𝑚) = (ℤ‘0))
1615raleqdv 3414 . . . . . 6 (𝑚 = 0 → (∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
1716rspcev 3621 . . . . 5 ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
182, 14, 17syl2anc 586 . . . 4 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1918ralrimiva 3180 . . 3 (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
201, 19jca 514 . 2 (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
21 0ex 5202 . . . . 5 ∅ ∈ V
2221a1i 11 . . . 4 (⊤ → ∅ ∈ V)
23 0fv 6702 . . . . 5 (∅‘𝑘) = ∅
2423a1i 11 . . . 4 ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅)
2522, 24clim 14843 . . 3 (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))))
2625mptru 1537 . 2 (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
2720, 26sylibr 236 1 (∅ ∈ ℂ → ∅ ⇝ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wtru 1531  wcel 2107  wral 3136  wrex 3137  Vcvv 3493  c0 4289   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529   < clt 10667  cmin 10862  cz 11973  cuz 12235  +crp 12381  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  climlimsupcex  42039
  Copyright terms: Public domain W3C validator