Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0cnv Structured version   Visualization version   GIF version

Theorem 0cnv 45839
Description: If is a complex number, then it converges to itself. See 0ncn 11024 and its comment; see also the comment in climlimsupcex 45866. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
0cnv (∅ ∈ ℂ → ∅ ⇝ ∅)

Proof of Theorem 0cnv
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (∅ ∈ ℂ → ∅ ∈ ℂ)
2 0zd 12480 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ)
3 simpl 482 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ)
4 subid 11380 . . . . . . . . . . 11 (∅ ∈ ℂ → (∅ − ∅) = 0)
54fveq2d 6826 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0))
6 abs0 15192 . . . . . . . . . . 11 (abs‘0) = 0
76a1i 11 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘0) = 0)
85, 7eqtrd 2766 . . . . . . . . 9 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0)
98adantr 480 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0)
10 rpgt0 12903 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1110adantl 481 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥)
129, 11eqbrtrd 5111 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥)
133, 12jca 511 . . . . . 6 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1413ralrimivw 3128 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
15 fveq2 6822 . . . . . . 7 (𝑚 = 0 → (ℤ𝑚) = (ℤ‘0))
1615raleqdv 3292 . . . . . 6 (𝑚 = 0 → (∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
1716rspcev 3572 . . . . 5 ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
182, 14, 17syl2anc 584 . . . 4 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1918ralrimiva 3124 . . 3 (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
201, 19jca 511 . 2 (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
21 0ex 5243 . . . . 5 ∅ ∈ V
2221a1i 11 . . . 4 (⊤ → ∅ ∈ V)
23 0fv 6863 . . . . 5 (∅‘𝑘) = ∅
2423a1i 11 . . . 4 ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅)
2522, 24clim 15401 . . 3 (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))))
2625mptru 1548 . 2 (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
2720, 26sylibr 234 1 (∅ ∈ ℂ → ∅ ⇝ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   < clt 11146  cmin 11344  cz 12468  cuz 12732  +crp 12890  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395
This theorem is referenced by:  climlimsupcex  45866
  Copyright terms: Public domain W3C validator