![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnv | Structured version Visualization version GIF version |
Description: If ∅ is a complex number, then it converges to itself. See 0ncn 11202 and its comment; see also the comment in climlimsupcex 45690. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
0cnv | ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (∅ ∈ ℂ → ∅ ∈ ℂ) | |
2 | 0zd 12651 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ) | |
3 | simpl 482 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ) | |
4 | subid 11555 | . . . . . . . . . . 11 ⊢ (∅ ∈ ℂ → (∅ − ∅) = 0) | |
5 | 4 | fveq2d 6924 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0)) |
6 | abs0 15334 | . . . . . . . . . . 11 ⊢ (abs‘0) = 0 | |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘0) = 0) |
8 | 5, 7 | eqtrd 2780 | . . . . . . . . 9 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0) |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0) |
10 | rpgt0 13069 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
12 | 9, 11 | eqbrtrd 5188 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥) |
13 | 3, 12 | jca 511 | . . . . . 6 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
14 | 13 | ralrimivw 3156 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
15 | fveq2 6920 | . . . . . . 7 ⊢ (𝑚 = 0 → (ℤ≥‘𝑚) = (ℤ≥‘0)) | |
16 | 15 | raleqdv 3334 | . . . . . 6 ⊢ (𝑚 = 0 → (∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
17 | 16 | rspcev 3635 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
18 | 2, 14, 17 | syl2anc 583 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
19 | 18 | ralrimiva 3152 | . . 3 ⊢ (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
20 | 1, 19 | jca 511 | . 2 ⊢ (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
21 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
23 | 0fv 6964 | . . . . 5 ⊢ (∅‘𝑘) = ∅ | |
24 | 23 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅) |
25 | 22, 24 | clim 15540 | . . 3 ⊢ (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))) |
26 | 25 | mptru 1544 | . 2 ⊢ (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
27 | 20, 26 | sylibr 234 | 1 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 < clt 11324 − cmin 11520 ℤcz 12639 ℤ≥cuz 12903 ℝ+crp 13057 abscabs 15283 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 |
This theorem is referenced by: climlimsupcex 45690 |
Copyright terms: Public domain | W3C validator |