Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0cnv Structured version   Visualization version   GIF version

Theorem 0cnv 45663
Description: If is a complex number, then it converges to itself. See 0ncn 11202 and its comment; see also the comment in climlimsupcex 45690. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
0cnv (∅ ∈ ℂ → ∅ ⇝ ∅)

Proof of Theorem 0cnv
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (∅ ∈ ℂ → ∅ ∈ ℂ)
2 0zd 12651 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ)
3 simpl 482 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ)
4 subid 11555 . . . . . . . . . . 11 (∅ ∈ ℂ → (∅ − ∅) = 0)
54fveq2d 6924 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0))
6 abs0 15334 . . . . . . . . . . 11 (abs‘0) = 0
76a1i 11 . . . . . . . . . 10 (∅ ∈ ℂ → (abs‘0) = 0)
85, 7eqtrd 2780 . . . . . . . . 9 (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0)
98adantr 480 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0)
10 rpgt0 13069 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1110adantl 481 . . . . . . . 8 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥)
129, 11eqbrtrd 5188 . . . . . . 7 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥)
133, 12jca 511 . . . . . 6 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1413ralrimivw 3156 . . . . 5 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
15 fveq2 6920 . . . . . . 7 (𝑚 = 0 → (ℤ𝑚) = (ℤ‘0))
1615raleqdv 3334 . . . . . 6 (𝑚 = 0 → (∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
1716rspcev 3635 . . . . 5 ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
182, 14, 17syl2anc 583 . . . 4 ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
1918ralrimiva 3152 . . 3 (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))
201, 19jca 511 . 2 (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
21 0ex 5325 . . . . 5 ∅ ∈ V
2221a1i 11 . . . 4 (⊤ → ∅ ∈ V)
23 0fv 6964 . . . . 5 (∅‘𝑘) = ∅
2423a1i 11 . . . 4 ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅)
2522, 24clim 15540 . . 3 (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))))
2625mptru 1544 . 2 (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))
2720, 26sylibr 234 1 (∅ ∈ ℂ → ∅ ⇝ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  climlimsupcex  45690
  Copyright terms: Public domain W3C validator