![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnv | Structured version Visualization version GIF version |
Description: If ∅ is a complex number, then it converges to itself. See 0ncn 11124 and its comment; see also the comment in climlimsupcex 44471. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
0cnv | ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (∅ ∈ ℂ → ∅ ∈ ℂ) | |
2 | 0zd 12566 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℤ) | |
3 | simpl 483 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∅ ∈ ℂ) | |
4 | subid 11475 | . . . . . . . . . . 11 ⊢ (∅ ∈ ℂ → (∅ − ∅) = 0) | |
5 | 4 | fveq2d 6892 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = (abs‘0)) |
6 | abs0 15228 | . . . . . . . . . . 11 ⊢ (abs‘0) = 0 | |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (∅ ∈ ℂ → (abs‘0) = 0) |
8 | 5, 7 | eqtrd 2772 | . . . . . . . . 9 ⊢ (∅ ∈ ℂ → (abs‘(∅ − ∅)) = 0) |
9 | 8 | adantr 481 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) = 0) |
10 | rpgt0 12982 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
11 | 10 | adantl 482 | . . . . . . . 8 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
12 | 9, 11 | eqbrtrd 5169 | . . . . . . 7 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘(∅ − ∅)) < 𝑥) |
13 | 3, 12 | jca 512 | . . . . . 6 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
14 | 13 | ralrimivw 3150 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
15 | fveq2 6888 | . . . . . . 7 ⊢ (𝑚 = 0 → (ℤ≥‘𝑚) = (ℤ≥‘0)) | |
16 | 15 | raleqdv 3325 | . . . . . 6 ⊢ (𝑚 = 0 → (∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
17 | 16 | rspcev 3612 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ≥‘0)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
18 | 2, 14, 17 | syl2anc 584 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
19 | 18 | ralrimiva 3146 | . . 3 ⊢ (∅ ∈ ℂ → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)) |
20 | 1, 19 | jca 512 | . 2 ⊢ (∅ ∈ ℂ → (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
21 | 0ex 5306 | . . . . 5 ⊢ ∅ ∈ V | |
22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
23 | 0fv 6932 | . . . . 5 ⊢ (∅‘𝑘) = ∅ | |
24 | 23 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℤ) → (∅‘𝑘) = ∅) |
25 | 22, 24 | clim 15434 | . . 3 ⊢ (⊤ → (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥)))) |
26 | 25 | mptru 1548 | . 2 ⊢ (∅ ⇝ ∅ ↔ (∅ ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑚)(∅ ∈ ℂ ∧ (abs‘(∅ − ∅)) < 𝑥))) |
27 | 20, 26 | sylibr 233 | 1 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ∅c0 4321 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 0cc0 11106 < clt 11244 − cmin 11440 ℤcz 12554 ℤ≥cuz 12818 ℝ+crp 12970 abscabs 15177 ⇝ cli 15424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 |
This theorem is referenced by: climlimsupcex 44471 |
Copyright terms: Public domain | W3C validator |