Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version |
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
0ring.3 | ⊢ 𝑋 = ran 𝐺 |
0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
2 | 1 | fvexi 6785 | . . . . . 6 ⊢ 𝑍 ∈ V |
3 | 2 | snid 4603 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
4 | eleq1 2828 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
5 | 3, 4 | mpbii 232 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
6 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
7 | 6, 1 | 0idl 36192 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
8 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
9 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
10 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
11 | 6, 8, 9, 10 | 1idl 36193 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
12 | 7, 11 | mpdan 684 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
13 | 5, 12 | syl5ib 243 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
14 | eqcom 2747 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
15 | 13, 14 | syl6ib 250 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
16 | 6 | rneqi 5845 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
17 | 9, 16 | eqtri 2768 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
18 | 17, 8, 10 | rngo1cl 36106 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
19 | eleq2 2829 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
20 | elsni 4584 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
21 | 20 | eqcomd 2746 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
22 | 19, 21 | syl6bi 252 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
23 | 18, 22 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
24 | 15, 23 | impbid 211 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 {csn 4567 ran crn 5591 ‘cfv 6432 1st c1st 7823 2nd c2nd 7824 GIdcgi 28861 RingOpscrngo 36061 Idlcidl 36174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-1st 7825 df-2nd 7826 df-grpo 28864 df-gid 28865 df-ginv 28866 df-ablo 28916 df-ass 36010 df-exid 36012 df-mgmOLD 36016 df-sgrOLD 36028 df-mndo 36034 df-rngo 36062 df-idl 36177 |
This theorem is referenced by: smprngopr 36219 isfldidl2 36236 |
Copyright terms: Public domain | W3C validator |