Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rngo Structured version   Visualization version   GIF version

Theorem 0rngo 37987
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
0ring.1 𝐺 = (1st𝑅)
0ring.2 𝐻 = (2nd𝑅)
0ring.3 𝑋 = ran 𝐺
0ring.4 𝑍 = (GId‘𝐺)
0ring.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
0rngo (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))

Proof of Theorem 0rngo
StepHypRef Expression
1 0ring.4 . . . . . . 7 𝑍 = (GId‘𝐺)
21fvexi 6934 . . . . . 6 𝑍 ∈ V
32snid 4684 . . . . 5 𝑍 ∈ {𝑍}
4 eleq1 2832 . . . . 5 (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
53, 4mpbii 233 . . . 4 (𝑍 = 𝑈𝑈 ∈ {𝑍})
6 0ring.1 . . . . . 6 𝐺 = (1st𝑅)
76, 10idl 37985 . . . . 5 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
8 0ring.2 . . . . . 6 𝐻 = (2nd𝑅)
9 0ring.3 . . . . . 6 𝑋 = ran 𝐺
10 0ring.5 . . . . . 6 𝑈 = (GId‘𝐻)
116, 8, 9, 101idl 37986 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
127, 11mpdan 686 . . . 4 (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
135, 12imbitrid 244 . . 3 (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋))
14 eqcom 2747 . . 3 ({𝑍} = 𝑋𝑋 = {𝑍})
1513, 14imbitrdi 251 . 2 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
166rneqi 5962 . . . . 5 ran 𝐺 = ran (1st𝑅)
179, 16eqtri 2768 . . . 4 𝑋 = ran (1st𝑅)
1817, 8, 10rngo1cl 37899 . . 3 (𝑅 ∈ RingOps → 𝑈𝑋)
19 eleq2 2833 . . . 4 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
20 elsni 4665 . . . . 5 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2120eqcomd 2746 . . . 4 (𝑈 ∈ {𝑍} → 𝑍 = 𝑈)
2219, 21biimtrdi 253 . . 3 (𝑋 = {𝑍} → (𝑈𝑋𝑍 = 𝑈))
2318, 22syl5com 31 . 2 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈))
2415, 23impbid 212 1 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {csn 4648  ran crn 5701  cfv 6573  1st c1st 8028  2nd c2nd 8029  GIdcgi 30522  RingOpscrngo 37854  Idlcidl 37967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-ass 37803  df-exid 37805  df-mgmOLD 37809  df-sgrOLD 37821  df-mndo 37827  df-rngo 37855  df-idl 37970
This theorem is referenced by:  smprngopr  38012  isfldidl2  38029
  Copyright terms: Public domain W3C validator