![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version |
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
0ring.3 | ⊢ 𝑋 = ran 𝐺 |
0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
2 | 1 | fvexi 6934 | . . . . . 6 ⊢ 𝑍 ∈ V |
3 | 2 | snid 4684 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
4 | eleq1 2832 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
5 | 3, 4 | mpbii 233 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
6 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
7 | 6, 1 | 0idl 37985 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
8 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
9 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
10 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
11 | 6, 8, 9, 10 | 1idl 37986 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
12 | 7, 11 | mpdan 686 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
13 | 5, 12 | imbitrid 244 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
14 | eqcom 2747 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
15 | 13, 14 | imbitrdi 251 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
16 | 6 | rneqi 5962 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
17 | 9, 16 | eqtri 2768 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
18 | 17, 8, 10 | rngo1cl 37899 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
19 | eleq2 2833 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
20 | elsni 4665 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
21 | 20 | eqcomd 2746 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
22 | 19, 21 | biimtrdi 253 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
23 | 18, 22 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
24 | 15, 23 | impbid 212 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {csn 4648 ran crn 5701 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 GIdcgi 30522 RingOpscrngo 37854 Idlcidl 37967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-1st 8030 df-2nd 8031 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-ass 37803 df-exid 37805 df-mgmOLD 37809 df-sgrOLD 37821 df-mndo 37827 df-rngo 37855 df-idl 37970 |
This theorem is referenced by: smprngopr 38012 isfldidl2 38029 |
Copyright terms: Public domain | W3C validator |