Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version |
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
0ring.3 | ⊢ 𝑋 = ran 𝐺 |
0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
2 | 1 | fvexi 6770 | . . . . . 6 ⊢ 𝑍 ∈ V |
3 | 2 | snid 4594 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
4 | eleq1 2826 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
5 | 3, 4 | mpbii 232 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
6 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
7 | 6, 1 | 0idl 36110 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
8 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
9 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
10 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
11 | 6, 8, 9, 10 | 1idl 36111 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
12 | 7, 11 | mpdan 683 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
13 | 5, 12 | syl5ib 243 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
14 | eqcom 2745 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
15 | 13, 14 | syl6ib 250 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
16 | 6 | rneqi 5835 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
17 | 9, 16 | eqtri 2766 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
18 | 17, 8, 10 | rngo1cl 36024 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
19 | eleq2 2827 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
20 | elsni 4575 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
21 | 20 | eqcomd 2744 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
22 | 19, 21 | syl6bi 252 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
23 | 18, 22 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
24 | 15, 23 | impbid 211 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 ran crn 5581 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 GIdcgi 28753 RingOpscrngo 35979 Idlcidl 36092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-ass 35928 df-exid 35930 df-mgmOLD 35934 df-sgrOLD 35946 df-mndo 35952 df-rngo 35980 df-idl 36095 |
This theorem is referenced by: smprngopr 36137 isfldidl2 36154 |
Copyright terms: Public domain | W3C validator |