Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rngo Structured version   Visualization version   GIF version

Theorem 0rngo 37993
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
0ring.1 𝐺 = (1st𝑅)
0ring.2 𝐻 = (2nd𝑅)
0ring.3 𝑋 = ran 𝐺
0ring.4 𝑍 = (GId‘𝐺)
0ring.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
0rngo (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))

Proof of Theorem 0rngo
StepHypRef Expression
1 0ring.4 . . . . . . 7 𝑍 = (GId‘𝐺)
21fvexi 6900 . . . . . 6 𝑍 ∈ V
32snid 4642 . . . . 5 𝑍 ∈ {𝑍}
4 eleq1 2821 . . . . 5 (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
53, 4mpbii 233 . . . 4 (𝑍 = 𝑈𝑈 ∈ {𝑍})
6 0ring.1 . . . . . 6 𝐺 = (1st𝑅)
76, 10idl 37991 . . . . 5 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
8 0ring.2 . . . . . 6 𝐻 = (2nd𝑅)
9 0ring.3 . . . . . 6 𝑋 = ran 𝐺
10 0ring.5 . . . . . 6 𝑈 = (GId‘𝐻)
116, 8, 9, 101idl 37992 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
127, 11mpdan 687 . . . 4 (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
135, 12imbitrid 244 . . 3 (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋))
14 eqcom 2741 . . 3 ({𝑍} = 𝑋𝑋 = {𝑍})
1513, 14imbitrdi 251 . 2 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
166rneqi 5928 . . . . 5 ran 𝐺 = ran (1st𝑅)
179, 16eqtri 2757 . . . 4 𝑋 = ran (1st𝑅)
1817, 8, 10rngo1cl 37905 . . 3 (𝑅 ∈ RingOps → 𝑈𝑋)
19 eleq2 2822 . . . 4 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
20 elsni 4623 . . . . 5 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2120eqcomd 2740 . . . 4 (𝑈 ∈ {𝑍} → 𝑍 = 𝑈)
2219, 21biimtrdi 253 . . 3 (𝑋 = {𝑍} → (𝑈𝑋𝑍 = 𝑈))
2318, 22syl5com 31 . 2 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈))
2415, 23impbid 212 1 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  {csn 4606  ran crn 5666  cfv 6541  1st c1st 7994  2nd c2nd 7995  GIdcgi 30437  RingOpscrngo 37860  Idlcidl 37973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-1st 7996  df-2nd 7997  df-grpo 30440  df-gid 30441  df-ginv 30442  df-ablo 30492  df-ass 37809  df-exid 37811  df-mgmOLD 37815  df-sgrOLD 37827  df-mndo 37833  df-rngo 37861  df-idl 37976
This theorem is referenced by:  smprngopr  38018  isfldidl2  38035
  Copyright terms: Public domain W3C validator