Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rngo Structured version   Visualization version   GIF version

Theorem 0rngo 37489
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
0ring.1 𝐺 = (1st𝑅)
0ring.2 𝐻 = (2nd𝑅)
0ring.3 𝑋 = ran 𝐺
0ring.4 𝑍 = (GId‘𝐺)
0ring.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
0rngo (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))

Proof of Theorem 0rngo
StepHypRef Expression
1 0ring.4 . . . . . . 7 𝑍 = (GId‘𝐺)
21fvexi 6905 . . . . . 6 𝑍 ∈ V
32snid 4660 . . . . 5 𝑍 ∈ {𝑍}
4 eleq1 2816 . . . . 5 (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
53, 4mpbii 232 . . . 4 (𝑍 = 𝑈𝑈 ∈ {𝑍})
6 0ring.1 . . . . . 6 𝐺 = (1st𝑅)
76, 10idl 37487 . . . . 5 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
8 0ring.2 . . . . . 6 𝐻 = (2nd𝑅)
9 0ring.3 . . . . . 6 𝑋 = ran 𝐺
10 0ring.5 . . . . . 6 𝑈 = (GId‘𝐻)
116, 8, 9, 101idl 37488 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
127, 11mpdan 686 . . . 4 (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
135, 12imbitrid 243 . . 3 (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋))
14 eqcom 2734 . . 3 ({𝑍} = 𝑋𝑋 = {𝑍})
1513, 14imbitrdi 250 . 2 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
166rneqi 5933 . . . . 5 ran 𝐺 = ran (1st𝑅)
179, 16eqtri 2755 . . . 4 𝑋 = ran (1st𝑅)
1817, 8, 10rngo1cl 37401 . . 3 (𝑅 ∈ RingOps → 𝑈𝑋)
19 eleq2 2817 . . . 4 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
20 elsni 4641 . . . . 5 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2120eqcomd 2733 . . . 4 (𝑈 ∈ {𝑍} → 𝑍 = 𝑈)
2219, 21biimtrdi 252 . . 3 (𝑋 = {𝑍} → (𝑈𝑋𝑍 = 𝑈))
2318, 22syl5com 31 . 2 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈))
2415, 23impbid 211 1 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  {csn 4624  ran crn 5673  cfv 6542  1st c1st 7985  2nd c2nd 7986  GIdcgi 30293  RingOpscrngo 37356  Idlcidl 37469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-1st 7987  df-2nd 7988  df-grpo 30296  df-gid 30297  df-ginv 30298  df-ablo 30348  df-ass 37305  df-exid 37307  df-mgmOLD 37311  df-sgrOLD 37323  df-mndo 37329  df-rngo 37357  df-idl 37472
This theorem is referenced by:  smprngopr  37514  isfldidl2  37531
  Copyright terms: Public domain W3C validator