![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version |
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
0ring.3 | ⊢ 𝑋 = ran 𝐺 |
0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
2 | 1 | fvexi 6911 | . . . . . 6 ⊢ 𝑍 ∈ V |
3 | 2 | snid 4665 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
4 | eleq1 2817 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
5 | 3, 4 | mpbii 232 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
6 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
7 | 6, 1 | 0idl 37498 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
8 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
9 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
10 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
11 | 6, 8, 9, 10 | 1idl 37499 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
12 | 7, 11 | mpdan 686 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
13 | 5, 12 | imbitrid 243 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
14 | eqcom 2735 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
15 | 13, 14 | imbitrdi 250 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
16 | 6 | rneqi 5939 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
17 | 9, 16 | eqtri 2756 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
18 | 17, 8, 10 | rngo1cl 37412 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
19 | eleq2 2818 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
20 | elsni 4646 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
21 | 20 | eqcomd 2734 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
22 | 19, 21 | biimtrdi 252 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
23 | 18, 22 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
24 | 15, 23 | impbid 211 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {csn 4629 ran crn 5679 ‘cfv 6548 1st c1st 7991 2nd c2nd 7992 GIdcgi 30299 RingOpscrngo 37367 Idlcidl 37480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-1st 7993 df-2nd 7994 df-grpo 30302 df-gid 30303 df-ginv 30304 df-ablo 30354 df-ass 37316 df-exid 37318 df-mgmOLD 37322 df-sgrOLD 37334 df-mndo 37340 df-rngo 37368 df-idl 37483 |
This theorem is referenced by: smprngopr 37525 isfldidl2 37542 |
Copyright terms: Public domain | W3C validator |