| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version | ||
| Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| 0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| 0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| 0ring.3 | ⊢ 𝑋 = ran 𝐺 |
| 0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
| 0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| 0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
| 2 | 1 | fvexi 6875 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 3 | 2 | snid 4629 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
| 4 | eleq1 2817 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
| 5 | 3, 4 | mpbii 233 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
| 6 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 7 | 6, 1 | 0idl 38026 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
| 8 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 9 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 10 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 11 | 6, 8, 9, 10 | 1idl 38027 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
| 12 | 7, 11 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
| 13 | 5, 12 | imbitrid 244 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
| 14 | eqcom 2737 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
| 15 | 13, 14 | imbitrdi 251 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
| 16 | 6 | rneqi 5904 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 17 | 9, 16 | eqtri 2753 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 18 | 17, 8, 10 | rngo1cl 37940 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| 19 | eleq2 2818 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
| 20 | elsni 4609 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
| 21 | 20 | eqcomd 2736 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
| 22 | 19, 21 | biimtrdi 253 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
| 23 | 18, 22 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
| 24 | 15, 23 | impbid 212 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 ran crn 5642 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 GIdcgi 30426 RingOpscrngo 37895 Idlcidl 38008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-1st 7971 df-2nd 7972 df-grpo 30429 df-gid 30430 df-ginv 30431 df-ablo 30481 df-ass 37844 df-exid 37846 df-mgmOLD 37850 df-sgrOLD 37862 df-mndo 37868 df-rngo 37896 df-idl 38011 |
| This theorem is referenced by: smprngopr 38053 isfldidl2 38070 |
| Copyright terms: Public domain | W3C validator |