Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rngo Structured version   Visualization version   GIF version

Theorem 0rngo 38073
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
0ring.1 𝐺 = (1st𝑅)
0ring.2 𝐻 = (2nd𝑅)
0ring.3 𝑋 = ran 𝐺
0ring.4 𝑍 = (GId‘𝐺)
0ring.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
0rngo (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))

Proof of Theorem 0rngo
StepHypRef Expression
1 0ring.4 . . . . . . 7 𝑍 = (GId‘𝐺)
21fvexi 6836 . . . . . 6 𝑍 ∈ V
32snid 4615 . . . . 5 𝑍 ∈ {𝑍}
4 eleq1 2819 . . . . 5 (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
53, 4mpbii 233 . . . 4 (𝑍 = 𝑈𝑈 ∈ {𝑍})
6 0ring.1 . . . . . 6 𝐺 = (1st𝑅)
76, 10idl 38071 . . . . 5 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
8 0ring.2 . . . . . 6 𝐻 = (2nd𝑅)
9 0ring.3 . . . . . 6 𝑋 = ran 𝐺
10 0ring.5 . . . . . 6 𝑈 = (GId‘𝐻)
116, 8, 9, 101idl 38072 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
127, 11mpdan 687 . . . 4 (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
135, 12imbitrid 244 . . 3 (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋))
14 eqcom 2738 . . 3 ({𝑍} = 𝑋𝑋 = {𝑍})
1513, 14imbitrdi 251 . 2 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
166rneqi 5877 . . . . 5 ran 𝐺 = ran (1st𝑅)
179, 16eqtri 2754 . . . 4 𝑋 = ran (1st𝑅)
1817, 8, 10rngo1cl 37985 . . 3 (𝑅 ∈ RingOps → 𝑈𝑋)
19 eleq2 2820 . . . 4 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
20 elsni 4593 . . . . 5 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2120eqcomd 2737 . . . 4 (𝑈 ∈ {𝑍} → 𝑍 = 𝑈)
2219, 21biimtrdi 253 . . 3 (𝑋 = {𝑍} → (𝑈𝑋𝑍 = 𝑈))
2318, 22syl5com 31 . 2 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈))
2415, 23impbid 212 1 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {csn 4576  ran crn 5617  cfv 6481  1st c1st 7919  2nd c2nd 7920  GIdcgi 30468  RingOpscrngo 37940  Idlcidl 38053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-grpo 30471  df-gid 30472  df-ginv 30473  df-ablo 30523  df-ass 37889  df-exid 37891  df-mgmOLD 37895  df-sgrOLD 37907  df-mndo 37913  df-rngo 37941  df-idl 38056
This theorem is referenced by:  smprngopr  38098  isfldidl2  38115
  Copyright terms: Public domain W3C validator