| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version | ||
| Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| 0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| 0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| 0ring.3 | ⊢ 𝑋 = ran 𝐺 |
| 0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
| 0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| 0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
| 2 | 1 | fvexi 6836 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 3 | 2 | snid 4615 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
| 4 | eleq1 2819 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
| 5 | 3, 4 | mpbii 233 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
| 6 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 7 | 6, 1 | 0idl 38071 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
| 8 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 9 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 10 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 11 | 6, 8, 9, 10 | 1idl 38072 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
| 12 | 7, 11 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
| 13 | 5, 12 | imbitrid 244 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
| 14 | eqcom 2738 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
| 15 | 13, 14 | imbitrdi 251 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
| 16 | 6 | rneqi 5877 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 17 | 9, 16 | eqtri 2754 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 18 | 17, 8, 10 | rngo1cl 37985 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| 19 | eleq2 2820 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
| 20 | elsni 4593 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
| 21 | 20 | eqcomd 2737 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
| 22 | 19, 21 | biimtrdi 253 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
| 23 | 18, 22 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
| 24 | 15, 23 | impbid 212 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {csn 4576 ran crn 5617 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 GIdcgi 30468 RingOpscrngo 37940 Idlcidl 38053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-1st 7921 df-2nd 7922 df-grpo 30471 df-gid 30472 df-ginv 30473 df-ablo 30523 df-ass 37889 df-exid 37891 df-mgmOLD 37895 df-sgrOLD 37907 df-mndo 37913 df-rngo 37941 df-idl 38056 |
| This theorem is referenced by: smprngopr 38098 isfldidl2 38115 |
| Copyright terms: Public domain | W3C validator |