![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pr | Structured version Visualization version GIF version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pr | ⊢ 1P ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1p 11051 | . 2 ⊢ 1P = {𝑥 ∣ 𝑥 <Q 1Q} | |
2 | 1nq 10997 | . . 3 ⊢ 1Q ∈ Q | |
3 | nqpr 11083 | . . 3 ⊢ (1Q ∈ Q → {𝑥 ∣ 𝑥 <Q 1Q} ∈ P) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ P |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 1P ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2717 class class class wbr 5166 Qcnq 10921 1Qc1q 10922 <Q cltq 10927 Pcnp 10928 1Pc1p 10929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-rq 10986 df-ltnq 10987 df-np 11050 df-1p 11051 |
This theorem is referenced by: 1idpr 11098 gt0srpr 11147 0r 11149 1sr 11150 m1r 11151 m1p1sr 11161 m1m1sr 11162 0lt1sr 11164 0idsr 11166 1idsr 11167 00sr 11168 recexsrlem 11172 mappsrpr 11177 ltpsrpr 11178 map2psrpr 11179 supsrlem 11180 |
Copyright terms: Public domain | W3C validator |