MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pr Structured version   Visualization version   GIF version

Theorem 1pr 11007
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1pr 1PP

Proof of Theorem 1pr
StepHypRef Expression
1 df-1p 10974 . 2 1P = {𝑥𝑥 <Q 1Q}
2 1nq 10920 . . 3 1QQ
3 nqpr 11006 . . 3 (1QQ → {𝑥𝑥 <Q 1Q} ∈ P)
42, 3ax-mp 5 . 2 {𝑥𝑥 <Q 1Q} ∈ P
51, 4eqeltri 2821 1 1PP
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  {cab 2701   class class class wbr 5139  Qcnq 10844  1Qc1q 10845   <Q cltq 10850  Pcnp 10851  1Pc1p 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8700  df-ni 10864  df-pli 10865  df-mi 10866  df-lti 10867  df-plpq 10900  df-mpq 10901  df-ltpq 10902  df-enq 10903  df-nq 10904  df-erq 10905  df-plq 10906  df-mq 10907  df-1nq 10908  df-rq 10909  df-ltnq 10910  df-np 10973  df-1p 10974
This theorem is referenced by:  1idpr  11021  gt0srpr  11070  0r  11072  1sr  11073  m1r  11074  m1p1sr  11084  m1m1sr  11085  0lt1sr  11087  0idsr  11089  1idsr  11090  00sr  11091  recexsrlem  11095  mappsrpr  11100  ltpsrpr  11101  map2psrpr  11102  supsrlem  11103
  Copyright terms: Public domain W3C validator