Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pr | Structured version Visualization version GIF version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pr | ⊢ 1P ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1p 10738 | . 2 ⊢ 1P = {𝑥 ∣ 𝑥 <Q 1Q} | |
2 | 1nq 10684 | . . 3 ⊢ 1Q ∈ Q | |
3 | nqpr 10770 | . . 3 ⊢ (1Q ∈ Q → {𝑥 ∣ 𝑥 <Q 1Q} ∈ P) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ P |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 1P ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2715 class class class wbr 5074 Qcnq 10608 1Qc1q 10609 <Q cltq 10614 Pcnp 10615 1Pc1p 10616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ni 10628 df-pli 10629 df-mi 10630 df-lti 10631 df-plpq 10664 df-mpq 10665 df-ltpq 10666 df-enq 10667 df-nq 10668 df-erq 10669 df-plq 10670 df-mq 10671 df-1nq 10672 df-rq 10673 df-ltnq 10674 df-np 10737 df-1p 10738 |
This theorem is referenced by: 1idpr 10785 gt0srpr 10834 0r 10836 1sr 10837 m1r 10838 m1p1sr 10848 m1m1sr 10849 0lt1sr 10851 0idsr 10853 1idsr 10854 00sr 10855 recexsrlem 10859 mappsrpr 10864 ltpsrpr 10865 map2psrpr 10866 supsrlem 10867 |
Copyright terms: Public domain | W3C validator |