| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1pr | Structured version Visualization version GIF version | ||
| Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1pr | ⊢ 1P ∈ P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1p 10911 | . 2 ⊢ 1P = {𝑥 ∣ 𝑥 <Q 1Q} | |
| 2 | 1nq 10857 | . . 3 ⊢ 1Q ∈ Q | |
| 3 | nqpr 10943 | . . 3 ⊢ (1Q ∈ Q → {𝑥 ∣ 𝑥 <Q 1Q} ∈ P) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ P |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 1P ∈ P |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 class class class wbr 5102 Qcnq 10781 1Qc1q 10782 <Q cltq 10787 Pcnp 10788 1Pc1p 10789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-rq 10846 df-ltnq 10847 df-np 10910 df-1p 10911 |
| This theorem is referenced by: 1idpr 10958 gt0srpr 11007 0r 11009 1sr 11010 m1r 11011 m1p1sr 11021 m1m1sr 11022 0lt1sr 11024 0idsr 11026 1idsr 11027 00sr 11028 recexsrlem 11032 mappsrpr 11037 ltpsrpr 11038 map2psrpr 11039 supsrlem 11040 |
| Copyright terms: Public domain | W3C validator |