Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pr | Structured version Visualization version GIF version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pr | ⊢ 1P ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1p 10748 | . 2 ⊢ 1P = {𝑥 ∣ 𝑥 <Q 1Q} | |
2 | 1nq 10694 | . . 3 ⊢ 1Q ∈ Q | |
3 | nqpr 10780 | . . 3 ⊢ (1Q ∈ Q → {𝑥 ∣ 𝑥 <Q 1Q} ∈ P) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ P |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 1P ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2715 class class class wbr 5073 Qcnq 10618 1Qc1q 10619 <Q cltq 10624 Pcnp 10625 1Pc1p 10626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-omul 8289 df-er 8485 df-ni 10638 df-pli 10639 df-mi 10640 df-lti 10641 df-plpq 10674 df-mpq 10675 df-ltpq 10676 df-enq 10677 df-nq 10678 df-erq 10679 df-plq 10680 df-mq 10681 df-1nq 10682 df-rq 10683 df-ltnq 10684 df-np 10747 df-1p 10748 |
This theorem is referenced by: 1idpr 10795 gt0srpr 10844 0r 10846 1sr 10847 m1r 10848 m1p1sr 10858 m1m1sr 10859 0lt1sr 10861 0idsr 10863 1idsr 10864 00sr 10865 recexsrlem 10869 mappsrpr 10874 ltpsrpr 10875 map2psrpr 10876 supsrlem 10877 |
Copyright terms: Public domain | W3C validator |