![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pr | Structured version Visualization version GIF version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pr | ⊢ 1P ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1p 10119 | . 2 ⊢ 1P = {𝑥 ∣ 𝑥 <Q 1Q} | |
2 | 1nq 10065 | . . 3 ⊢ 1Q ∈ Q | |
3 | nqpr 10151 | . . 3 ⊢ (1Q ∈ Q → {𝑥 ∣ 𝑥 <Q 1Q} ∈ P) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ P |
5 | 1, 4 | eqeltri 2902 | 1 ⊢ 1P ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2164 {cab 2811 class class class wbr 4873 Qcnq 9989 1Qc1q 9990 <Q cltq 9995 Pcnp 9996 1Pc1p 9997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-omul 7831 df-er 8009 df-ni 10009 df-pli 10010 df-mi 10011 df-lti 10012 df-plpq 10045 df-mpq 10046 df-ltpq 10047 df-enq 10048 df-nq 10049 df-erq 10050 df-plq 10051 df-mq 10052 df-1nq 10053 df-rq 10054 df-ltnq 10055 df-np 10118 df-1p 10119 |
This theorem is referenced by: 1idpr 10166 gt0srpr 10215 0r 10217 1sr 10218 m1r 10219 m1p1sr 10229 m1m1sr 10230 0lt1sr 10232 0idsr 10234 1idsr 10235 00sr 10236 recexsrlem 10240 mappsrpr 10245 ltpsrpr 10246 map2psrpr 10247 supsrlem 10248 |
Copyright terms: Public domain | W3C validator |