MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pr Structured version   Visualization version   GIF version

Theorem 1pr 11006
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1pr 1PP

Proof of Theorem 1pr
StepHypRef Expression
1 df-1p 10973 . 2 1P = {𝑥𝑥 <Q 1Q}
2 1nq 10919 . . 3 1QQ
3 nqpr 11005 . . 3 (1QQ → {𝑥𝑥 <Q 1Q} ∈ P)
42, 3ax-mp 5 . 2 {𝑥𝑥 <Q 1Q} ∈ P
51, 4eqeltri 2829 1 1PP
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2709   class class class wbr 5147  Qcnq 10843  1Qc1q 10844   <Q cltq 10849  Pcnp 10850  1Pc1p 10851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-ni 10863  df-pli 10864  df-mi 10865  df-lti 10866  df-plpq 10899  df-mpq 10900  df-ltpq 10901  df-enq 10902  df-nq 10903  df-erq 10904  df-plq 10905  df-mq 10906  df-1nq 10907  df-rq 10908  df-ltnq 10909  df-np 10972  df-1p 10973
This theorem is referenced by:  1idpr  11020  gt0srpr  11069  0r  11071  1sr  11072  m1r  11073  m1p1sr  11083  m1m1sr  11084  0lt1sr  11086  0idsr  11088  1idsr  11089  00sr  11090  recexsrlem  11094  mappsrpr  11099  ltpsrpr  11100  map2psrpr  11101  supsrlem  11102
  Copyright terms: Public domain W3C validator