MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfnq Structured version   Visualization version   GIF version

Theorem halfnq 10732
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
halfnq (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem halfnq
StepHypRef Expression
1 distrnq 10717 . . . 4 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q))))
2 distrnq 10717 . . . . . . . 8 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
3 1nq 10684 . . . . . . . . . . 11 1QQ
4 addclnq 10701 . . . . . . . . . . 11 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
53, 3, 4mp2an 689 . . . . . . . . . 10 (1Q +Q 1Q) ∈ Q
6 recidnq 10721 . . . . . . . . . 10 ((1Q +Q 1Q) ∈ Q → ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q)
75, 6ax-mp 5 . . . . . . . . 9 ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q
87, 7oveq12i 7287 . . . . . . . 8 (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
92, 8eqtri 2766 . . . . . . 7 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
109oveq1i 7285 . . . . . 6 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))
117oveq2i 7286 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q)
12 mulassnq 10715 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
13 mulcomnq 10709 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
1413oveq1i 7285 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
1512, 14eqtr3i 2768 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
16 recclnq 10722 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → (*Q‘(1Q +Q 1Q)) ∈ Q)
17 addclnq 10701 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
1816, 16, 17syl2anc 584 . . . . . . . 8 ((1Q +Q 1Q) ∈ Q → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
19 mulidnq 10719 . . . . . . . 8 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
205, 18, 19mp2b 10 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2111, 15, 203eqtr3i 2774 . . . . . 6 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2210, 21, 73eqtr3i 2774 . . . . 5 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) = 1Q
2322oveq2i 7286 . . . 4 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
241, 23eqtr3i 2768 . . 3 ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
25 mulidnq 10719 . . 3 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
2624, 25eqtrid 2790 . 2 (𝐴Q → ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴)
27 ovex 7308 . . 3 (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ V
28 oveq12 7284 . . . . 5 ((𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∧ 𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
2928anidms 567 . . . 4 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
3029eqeq1d 2740 . . 3 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3127, 30spcev 3545 . 2 (((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴 → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
3226, 31syl 17 1 (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1782  wcel 2106  cfv 6433  (class class class)co 7275  Qcnq 10608  1Qc1q 10609   +Q cplq 10611   ·Q cmq 10612  *Qcrq 10613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673
This theorem is referenced by:  nsmallnq  10733
  Copyright terms: Public domain W3C validator