MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfnq Structured version   Visualization version   GIF version

Theorem halfnq 10663
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
halfnq (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem halfnq
StepHypRef Expression
1 distrnq 10648 . . . 4 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q))))
2 distrnq 10648 . . . . . . . 8 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
3 1nq 10615 . . . . . . . . . . 11 1QQ
4 addclnq 10632 . . . . . . . . . . 11 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
53, 3, 4mp2an 688 . . . . . . . . . 10 (1Q +Q 1Q) ∈ Q
6 recidnq 10652 . . . . . . . . . 10 ((1Q +Q 1Q) ∈ Q → ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q)
75, 6ax-mp 5 . . . . . . . . 9 ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q
87, 7oveq12i 7267 . . . . . . . 8 (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
92, 8eqtri 2766 . . . . . . 7 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
109oveq1i 7265 . . . . . 6 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))
117oveq2i 7266 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q)
12 mulassnq 10646 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
13 mulcomnq 10640 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
1413oveq1i 7265 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
1512, 14eqtr3i 2768 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
16 recclnq 10653 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → (*Q‘(1Q +Q 1Q)) ∈ Q)
17 addclnq 10632 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
1816, 16, 17syl2anc 583 . . . . . . . 8 ((1Q +Q 1Q) ∈ Q → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
19 mulidnq 10650 . . . . . . . 8 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
205, 18, 19mp2b 10 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2111, 15, 203eqtr3i 2774 . . . . . 6 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2210, 21, 73eqtr3i 2774 . . . . 5 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) = 1Q
2322oveq2i 7266 . . . 4 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
241, 23eqtr3i 2768 . . 3 ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
25 mulidnq 10650 . . 3 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
2624, 25eqtrid 2790 . 2 (𝐴Q → ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴)
27 ovex 7288 . . 3 (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ V
28 oveq12 7264 . . . . 5 ((𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∧ 𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
2928anidms 566 . . . 4 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
3029eqeq1d 2740 . . 3 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3127, 30spcev 3535 . 2 (((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴 → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
3226, 31syl 17 1 (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1783  wcel 2108  cfv 6418  (class class class)co 7255  Qcnq 10539  1Qc1q 10540   +Q cplq 10542   ·Q cmq 10543  *Qcrq 10544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604
This theorem is referenced by:  nsmallnq  10664
  Copyright terms: Public domain W3C validator