Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlempsb Structured version   Visualization version   GIF version

Theorem 4atexlempsb 37837
Description: Lemma for 4atexlem7 37852. (Contributed by NM, 23-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlempqb.j = (join‘𝐾)
4thatlempqb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atexlempsb (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))

Proof of Theorem 4atexlempsb
StepHypRef Expression
1 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
214atexlemk 37824 . 2 (𝜑𝐾 ∈ HL)
314atexlemp 37827 . 2 (𝜑𝑃𝐴)
414atexlems 37829 . 2 (𝜑𝑆𝐴)
5 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
6 4thatlempqb.j . . 3 = (join‘𝐾)
7 4thatlempqb.a . . 3 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 37144 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
92, 3, 4, 8syl3anc 1373 1 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2111  wne 2941   class class class wbr 5067  cfv 6397  (class class class)co 7231  Basecbs 16784  joincjn 17842  Atomscatm 37040  HLchlt 37127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-lub 17876  df-glb 17877  df-join 17878  df-meet 17879  df-lat 17962  df-ats 37044  df-atl 37075  df-cvlat 37099  df-hlat 37128
This theorem is referenced by:  4atexlemunv  37843  4atexlemtlw  37844  4atexlemc  37846  4atexlemnclw  37847  4atexlemex2  37848  4atexlemcnd  37849
  Copyright terms: Public domain W3C validator