Step | Hyp | Ref
| Expression |
1 | | 4thatlem.ph |
. . 3
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π
β π΄ β§ Β¬ π
β€ π β§ (π β¨ π
) = (π β¨ π
)) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) |
2 | 1 | 4atexlemnslpq 39231 |
. 2
β’ (π β Β¬ π β€ (π β¨ π)) |
3 | 1 | 4atexlemk 39222 |
. . . . . . 7
β’ (π β πΎ β HL) |
4 | 1 | 4atexlemp 39225 |
. . . . . . 7
β’ (π β π β π΄) |
5 | 1 | 4atexlems 39227 |
. . . . . . 7
β’ (π β π β π΄) |
6 | | 4thatlem0.l |
. . . . . . . 8
β’ β€ =
(leβπΎ) |
7 | | 4thatlem0.j |
. . . . . . . 8
β’ β¨ =
(joinβπΎ) |
8 | | 4thatlem0.a |
. . . . . . . 8
β’ π΄ = (AtomsβπΎ) |
9 | 6, 7, 8 | hlatlej2 38550 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
10 | 3, 4, 5, 9 | syl3anc 1370 |
. . . . . 6
β’ (π β π β€ (π β¨ π)) |
11 | 10 | adantr 480 |
. . . . 5
β’ ((π β§ π = π) β π β€ (π β¨ π)) |
12 | | 4thatlem0.v |
. . . . . . . . 9
β’ π = ((π β¨ π) β§ π) |
13 | 1 | 4atexlemkl 39232 |
. . . . . . . . . 10
β’ (π β πΎ β Lat) |
14 | 1, 7, 8 | 4atexlempsb 39235 |
. . . . . . . . . 10
β’ (π β (π β¨ π) β (BaseβπΎ)) |
15 | | 4thatlem0.h |
. . . . . . . . . . 11
β’ π» = (LHypβπΎ) |
16 | 1, 15 | 4atexlemwb 39234 |
. . . . . . . . . 10
β’ (π β π β (BaseβπΎ)) |
17 | | eqid 2731 |
. . . . . . . . . . 11
β’
(BaseβπΎ) =
(BaseβπΎ) |
18 | | 4thatlem0.m |
. . . . . . . . . . 11
β’ β§ =
(meetβπΎ) |
19 | 17, 6, 18 | latmle1 18422 |
. . . . . . . . . 10
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ (π β¨ π)) |
20 | 13, 14, 16, 19 | syl3anc 1370 |
. . . . . . . . 9
β’ (π β ((π β¨ π) β§ π) β€ (π β¨ π)) |
21 | 12, 20 | eqbrtrid 5184 |
. . . . . . . 8
β’ (π β π β€ (π β¨ π)) |
22 | 1 | 4atexlemkc 39233 |
. . . . . . . . 9
β’ (π β πΎ β CvLat) |
23 | | 4thatlem0.u |
. . . . . . . . . 10
β’ π = ((π β¨ π) β§ π) |
24 | 1, 6, 7, 18, 8, 15, 23, 12 | 4atexlemv 39240 |
. . . . . . . . 9
β’ (π β π β π΄) |
25 | 17, 6, 18 | latmle2 18423 |
. . . . . . . . . . . 12
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ π) |
26 | 13, 14, 16, 25 | syl3anc 1370 |
. . . . . . . . . . 11
β’ (π β ((π β¨ π) β§ π) β€ π) |
27 | 12, 26 | eqbrtrid 5184 |
. . . . . . . . . 10
β’ (π β π β€ π) |
28 | 1 | 4atexlempw 39224 |
. . . . . . . . . . 11
β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
29 | 28 | simprd 495 |
. . . . . . . . . 10
β’ (π β Β¬ π β€ π) |
30 | | nbrne2 5169 |
. . . . . . . . . 10
β’ ((π β€ π β§ Β¬ π β€ π) β π β π) |
31 | 27, 29, 30 | syl2anc 583 |
. . . . . . . . 9
β’ (π β π β π) |
32 | 6, 7, 8 | cvlatexchb1 38508 |
. . . . . . . . 9
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
33 | 22, 24, 5, 4, 31, 32 | syl131anc 1382 |
. . . . . . . 8
β’ (π β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
34 | 21, 33 | mpbid 231 |
. . . . . . 7
β’ (π β (π β¨ π) = (π β¨ π)) |
35 | 34 | adantr 480 |
. . . . . 6
β’ ((π β§ π = π) β (π β¨ π) = (π β¨ π)) |
36 | | oveq2 7420 |
. . . . . . . 8
β’ (π = π β (π β¨ π) = (π β¨ π)) |
37 | 36 | eqcomd 2737 |
. . . . . . 7
β’ (π = π β (π β¨ π) = (π β¨ π)) |
38 | 1 | 4atexlemq 39226 |
. . . . . . . . . . 11
β’ (π β π β π΄) |
39 | 17, 7, 8 | hlatjcl 38541 |
. . . . . . . . . . 11
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
40 | 3, 4, 38, 39 | syl3anc 1370 |
. . . . . . . . . 10
β’ (π β (π β¨ π) β (BaseβπΎ)) |
41 | 17, 6, 18 | latmle1 18422 |
. . . . . . . . . 10
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ (π β¨ π)) |
42 | 13, 40, 16, 41 | syl3anc 1370 |
. . . . . . . . 9
β’ (π β ((π β¨ π) β§ π) β€ (π β¨ π)) |
43 | 23, 42 | eqbrtrid 5184 |
. . . . . . . 8
β’ (π β π β€ (π β¨ π)) |
44 | 1, 6, 7, 18, 8, 15, 23 | 4atexlemu 39239 |
. . . . . . . . 9
β’ (π β π β π΄) |
45 | 17, 6, 18 | latmle2 18423 |
. . . . . . . . . . . 12
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ π) |
46 | 13, 40, 16, 45 | syl3anc 1370 |
. . . . . . . . . . 11
β’ (π β ((π β¨ π) β§ π) β€ π) |
47 | 23, 46 | eqbrtrid 5184 |
. . . . . . . . . 10
β’ (π β π β€ π) |
48 | | nbrne2 5169 |
. . . . . . . . . 10
β’ ((π β€ π β§ Β¬ π β€ π) β π β π) |
49 | 47, 29, 48 | syl2anc 583 |
. . . . . . . . 9
β’ (π β π β π) |
50 | 6, 7, 8 | cvlatexchb1 38508 |
. . . . . . . . 9
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
51 | 22, 44, 38, 4, 49, 50 | syl131anc 1382 |
. . . . . . . 8
β’ (π β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
52 | 43, 51 | mpbid 231 |
. . . . . . 7
β’ (π β (π β¨ π) = (π β¨ π)) |
53 | 37, 52 | sylan9eqr 2793 |
. . . . . 6
β’ ((π β§ π = π) β (π β¨ π) = (π β¨ π)) |
54 | 35, 53 | eqtr3d 2773 |
. . . . 5
β’ ((π β§ π = π) β (π β¨ π) = (π β¨ π)) |
55 | 11, 54 | breqtrd 5175 |
. . . 4
β’ ((π β§ π = π) β π β€ (π β¨ π)) |
56 | 55 | ex 412 |
. . 3
β’ (π β (π = π β π β€ (π β¨ π))) |
57 | 56 | necon3bd 2953 |
. 2
β’ (π β (Β¬ π β€ (π β¨ π) β π β π)) |
58 | 2, 57 | mpd 15 |
1
β’ (π β π β π) |