Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemunv Structured version   Visualization version   GIF version

Theorem 4atexlemunv 36647
Description: Lemma for 4atexlem7 36656. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemunv (𝜑𝑈𝑉)

Proof of Theorem 4atexlemunv
StepHypRef Expression
1 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
214atexlemnslpq 36637 . 2 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
314atexlemk 36628 . . . . . . 7 (𝜑𝐾 ∈ HL)
414atexlemp 36631 . . . . . . 7 (𝜑𝑃𝐴)
514atexlems 36633 . . . . . . 7 (𝜑𝑆𝐴)
6 4thatlem0.l . . . . . . . 8 = (le‘𝐾)
7 4thatlem0.j . . . . . . . 8 = (join‘𝐾)
8 4thatlem0.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatlej2 35957 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
103, 4, 5, 9syl3anc 1351 . . . . . 6 (𝜑𝑆 (𝑃 𝑆))
1110adantr 473 . . . . 5 ((𝜑𝑈 = 𝑉) → 𝑆 (𝑃 𝑆))
12 4thatlem0.v . . . . . . . . 9 𝑉 = ((𝑃 𝑆) 𝑊)
1314atexlemkl 36638 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
141, 7, 84atexlempsb 36641 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
15 4thatlem0.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
161, 154atexlemwb 36640 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
17 eqid 2778 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
18 4thatlem0.m . . . . . . . . . . 11 = (meet‘𝐾)
1917, 6, 18latmle1 17547 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
2013, 14, 16, 19syl3anc 1351 . . . . . . . . 9 (𝜑 → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
2112, 20syl5eqbr 4965 . . . . . . . 8 (𝜑𝑉 (𝑃 𝑆))
2214atexlemkc 36639 . . . . . . . . 9 (𝜑𝐾 ∈ CvLat)
23 4thatlem0.u . . . . . . . . . 10 𝑈 = ((𝑃 𝑄) 𝑊)
241, 6, 7, 18, 8, 15, 23, 124atexlemv 36646 . . . . . . . . 9 (𝜑𝑉𝐴)
2517, 6, 18latmle2 17548 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
2613, 14, 16, 25syl3anc 1351 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
2712, 26syl5eqbr 4965 . . . . . . . . . 10 (𝜑𝑉 𝑊)
2814atexlempw 36630 . . . . . . . . . . 11 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2928simprd 488 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 𝑊)
30 nbrne2 4950 . . . . . . . . . 10 ((𝑉 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑉𝑃)
3127, 29, 30syl2anc 576 . . . . . . . . 9 (𝜑𝑉𝑃)
326, 7, 8cvlatexchb1 35915 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑉𝐴𝑆𝐴𝑃𝐴) ∧ 𝑉𝑃) → (𝑉 (𝑃 𝑆) ↔ (𝑃 𝑉) = (𝑃 𝑆)))
3322, 24, 5, 4, 31, 32syl131anc 1363 . . . . . . . 8 (𝜑 → (𝑉 (𝑃 𝑆) ↔ (𝑃 𝑉) = (𝑃 𝑆)))
3421, 33mpbid 224 . . . . . . 7 (𝜑 → (𝑃 𝑉) = (𝑃 𝑆))
3534adantr 473 . . . . . 6 ((𝜑𝑈 = 𝑉) → (𝑃 𝑉) = (𝑃 𝑆))
36 oveq2 6986 . . . . . . . 8 (𝑈 = 𝑉 → (𝑃 𝑈) = (𝑃 𝑉))
3736eqcomd 2784 . . . . . . 7 (𝑈 = 𝑉 → (𝑃 𝑉) = (𝑃 𝑈))
3814atexlemq 36632 . . . . . . . . . . 11 (𝜑𝑄𝐴)
3917, 7, 8hlatjcl 35948 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
403, 4, 38, 39syl3anc 1351 . . . . . . . . . 10 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
4117, 6, 18latmle1 17547 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
4213, 40, 16, 41syl3anc 1351 . . . . . . . . 9 (𝜑 → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
4323, 42syl5eqbr 4965 . . . . . . . 8 (𝜑𝑈 (𝑃 𝑄))
441, 6, 7, 18, 8, 15, 234atexlemu 36645 . . . . . . . . 9 (𝜑𝑈𝐴)
4517, 6, 18latmle2 17548 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
4613, 40, 16, 45syl3anc 1351 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
4723, 46syl5eqbr 4965 . . . . . . . . . 10 (𝜑𝑈 𝑊)
48 nbrne2 4950 . . . . . . . . . 10 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
4947, 29, 48syl2anc 576 . . . . . . . . 9 (𝜑𝑈𝑃)
506, 7, 8cvlatexchb1 35915 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑄𝐴𝑃𝐴) ∧ 𝑈𝑃) → (𝑈 (𝑃 𝑄) ↔ (𝑃 𝑈) = (𝑃 𝑄)))
5122, 44, 38, 4, 49, 50syl131anc 1363 . . . . . . . 8 (𝜑 → (𝑈 (𝑃 𝑄) ↔ (𝑃 𝑈) = (𝑃 𝑄)))
5243, 51mpbid 224 . . . . . . 7 (𝜑 → (𝑃 𝑈) = (𝑃 𝑄))
5337, 52sylan9eqr 2836 . . . . . 6 ((𝜑𝑈 = 𝑉) → (𝑃 𝑉) = (𝑃 𝑄))
5435, 53eqtr3d 2816 . . . . 5 ((𝜑𝑈 = 𝑉) → (𝑃 𝑆) = (𝑃 𝑄))
5511, 54breqtrd 4956 . . . 4 ((𝜑𝑈 = 𝑉) → 𝑆 (𝑃 𝑄))
5655ex 405 . . 3 (𝜑 → (𝑈 = 𝑉𝑆 (𝑃 𝑄)))
5756necon3bd 2981 . 2 (𝜑 → (¬ 𝑆 (𝑃 𝑄) → 𝑈𝑉))
582, 57mpd 15 1 (𝜑𝑈𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967   class class class wbr 4930  cfv 6190  (class class class)co 6978  Basecbs 16342  lecple 16431  joincjn 17415  meetcmee 17416  Latclat 17516  Atomscatm 35844  CvLatclc 35846  HLchlt 35931  LHypclh 36565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-proset 17399  df-poset 17417  df-plt 17429  df-lub 17445  df-glb 17446  df-join 17447  df-meet 17448  df-p0 17510  df-p1 17511  df-lat 17517  df-clat 17579  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-lhyp 36569
This theorem is referenced by:  4atexlemtlw  36648  4atexlemntlpq  36649  4atexlemc  36650  4atexlemnclw  36651
  Copyright terms: Public domain W3C validator