Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemunv Structured version   Visualization version   GIF version

Theorem 4atexlemunv 39241
Description: Lemma for 4atexlem7 39250. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlem0.l ≀ = (leβ€˜πΎ)
4thatlem0.j ∨ = (joinβ€˜πΎ)
4thatlem0.m ∧ = (meetβ€˜πΎ)
4thatlem0.a 𝐴 = (Atomsβ€˜πΎ)
4thatlem0.h 𝐻 = (LHypβ€˜πΎ)
4thatlem0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
4thatlem0.v 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
4atexlemunv (πœ‘ β†’ π‘ˆ β‰  𝑉)

Proof of Theorem 4atexlemunv
StepHypRef Expression
1 4thatlem.ph . . 3 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
214atexlemnslpq 39231 . 2 (πœ‘ β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
314atexlemk 39222 . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ HL)
414atexlemp 39225 . . . . . . 7 (πœ‘ β†’ 𝑃 ∈ 𝐴)
514atexlems 39227 . . . . . . 7 (πœ‘ β†’ 𝑆 ∈ 𝐴)
6 4thatlem0.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
7 4thatlem0.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
8 4thatlem0.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatlej2 38550 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
103, 4, 5, 9syl3anc 1370 . . . . . 6 (πœ‘ β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
1110adantr 480 . . . . 5 ((πœ‘ ∧ π‘ˆ = 𝑉) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
12 4thatlem0.v . . . . . . . . 9 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
1314atexlemkl 39232 . . . . . . . . . 10 (πœ‘ β†’ 𝐾 ∈ Lat)
141, 7, 84atexlempsb 39235 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
15 4thatlem0.h . . . . . . . . . . 11 𝐻 = (LHypβ€˜πΎ)
161, 154atexlemwb 39234 . . . . . . . . . 10 (πœ‘ β†’ π‘Š ∈ (Baseβ€˜πΎ))
17 eqid 2731 . . . . . . . . . . 11 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
18 4thatlem0.m . . . . . . . . . . 11 ∧ = (meetβ€˜πΎ)
1917, 6, 18latmle1 18422 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ (𝑃 ∨ 𝑆))
2013, 14, 16, 19syl3anc 1370 . . . . . . . . 9 (πœ‘ β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ (𝑃 ∨ 𝑆))
2112, 20eqbrtrid 5184 . . . . . . . 8 (πœ‘ β†’ 𝑉 ≀ (𝑃 ∨ 𝑆))
2214atexlemkc 39233 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ CvLat)
23 4thatlem0.u . . . . . . . . . 10 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
241, 6, 7, 18, 8, 15, 23, 124atexlemv 39240 . . . . . . . . 9 (πœ‘ β†’ 𝑉 ∈ 𝐴)
2517, 6, 18latmle2 18423 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š)
2613, 14, 16, 25syl3anc 1370 . . . . . . . . . . 11 (πœ‘ β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š)
2712, 26eqbrtrid 5184 . . . . . . . . . 10 (πœ‘ β†’ 𝑉 ≀ π‘Š)
2814atexlempw 39224 . . . . . . . . . . 11 (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
2928simprd 495 . . . . . . . . . 10 (πœ‘ β†’ Β¬ 𝑃 ≀ π‘Š)
30 nbrne2 5169 . . . . . . . . . 10 ((𝑉 ≀ π‘Š ∧ Β¬ 𝑃 ≀ π‘Š) β†’ 𝑉 β‰  𝑃)
3127, 29, 30syl2anc 583 . . . . . . . . 9 (πœ‘ β†’ 𝑉 β‰  𝑃)
326, 7, 8cvlatexchb1 38508 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑉 β‰  𝑃) β†’ (𝑉 ≀ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆)))
3322, 24, 5, 4, 31, 32syl131anc 1382 . . . . . . . 8 (πœ‘ β†’ (𝑉 ≀ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆)))
3421, 33mpbid 231 . . . . . . 7 (πœ‘ β†’ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆))
3534adantr 480 . . . . . 6 ((πœ‘ ∧ π‘ˆ = 𝑉) β†’ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆))
36 oveq2 7420 . . . . . . . 8 (π‘ˆ = 𝑉 β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑉))
3736eqcomd 2737 . . . . . . 7 (π‘ˆ = 𝑉 β†’ (𝑃 ∨ 𝑉) = (𝑃 ∨ π‘ˆ))
3814atexlemq 39226 . . . . . . . . . . 11 (πœ‘ β†’ 𝑄 ∈ 𝐴)
3917, 7, 8hlatjcl 38541 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
403, 4, 38, 39syl3anc 1370 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
4117, 6, 18latmle1 18422 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
4213, 40, 16, 41syl3anc 1370 . . . . . . . . 9 (πœ‘ β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ (𝑃 ∨ 𝑄))
4323, 42eqbrtrid 5184 . . . . . . . 8 (πœ‘ β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
441, 6, 7, 18, 8, 15, 234atexlemu 39239 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ ∈ 𝐴)
4517, 6, 18latmle2 18423 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
4613, 40, 16, 45syl3anc 1370 . . . . . . . . . . 11 (πœ‘ β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
4723, 46eqbrtrid 5184 . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ ≀ π‘Š)
48 nbrne2 5169 . . . . . . . . . 10 ((π‘ˆ ≀ π‘Š ∧ Β¬ 𝑃 ≀ π‘Š) β†’ π‘ˆ β‰  𝑃)
4947, 29, 48syl2anc 583 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ β‰  𝑃)
506, 7, 8cvlatexchb1 38508 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ π‘ˆ β‰  𝑃) β†’ (π‘ˆ ≀ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄)))
5122, 44, 38, 4, 49, 50syl131anc 1382 . . . . . . . 8 (πœ‘ β†’ (π‘ˆ ≀ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄)))
5243, 51mpbid 231 . . . . . . 7 (πœ‘ β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
5337, 52sylan9eqr 2793 . . . . . 6 ((πœ‘ ∧ π‘ˆ = 𝑉) β†’ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑄))
5435, 53eqtr3d 2773 . . . . 5 ((πœ‘ ∧ π‘ˆ = 𝑉) β†’ (𝑃 ∨ 𝑆) = (𝑃 ∨ 𝑄))
5511, 54breqtrd 5175 . . . 4 ((πœ‘ ∧ π‘ˆ = 𝑉) β†’ 𝑆 ≀ (𝑃 ∨ 𝑄))
5655ex 412 . . 3 (πœ‘ β†’ (π‘ˆ = 𝑉 β†’ 𝑆 ≀ (𝑃 ∨ 𝑄)))
5756necon3bd 2953 . 2 (πœ‘ β†’ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) β†’ π‘ˆ β‰  𝑉))
582, 57mpd 15 1 (πœ‘ β†’ π‘ˆ β‰  𝑉)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  Latclat 18389  Atomscatm 38437  CvLatclc 38439  HLchlt 38524  LHypclh 39159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-lhyp 39163
This theorem is referenced by:  4atexlemtlw  39242  4atexlemntlpq  39243  4atexlemc  39244  4atexlemnclw  39245
  Copyright terms: Public domain W3C validator