Proof of Theorem 4atexlemunv
| Step | Hyp | Ref
| Expression |
| 1 | | 4thatlem.ph |
. . 3
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 2 | 1 | 4atexlemnslpq 40058 |
. 2
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 3 | 1 | 4atexlemk 40049 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ HL) |
| 4 | 1 | 4atexlemp 40052 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 5 | 1 | 4atexlems 40054 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 6 | | 4thatlem0.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 7 | | 4thatlem0.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
| 8 | | 4thatlem0.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 6, 7, 8 | hlatlej2 39377 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
| 10 | 3, 4, 5, 9 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
| 12 | | 4thatlem0.v |
. . . . . . . . 9
⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| 13 | 1 | 4atexlemkl 40059 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Lat) |
| 14 | 1, 7, 8 | 4atexlempsb 40062 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 15 | | 4thatlem0.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
| 16 | 1, 15 | 4atexlemwb 40061 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
| 17 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 18 | | 4thatlem0.m |
. . . . . . . . . . 11
⊢ ∧ =
(meet‘𝐾) |
| 19 | 17, 6, 18 | latmle1 18509 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
| 20 | 13, 14, 16, 19 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
| 21 | 12, 20 | eqbrtrid 5178 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ≤ (𝑃 ∨ 𝑆)) |
| 22 | 1 | 4atexlemkc 40060 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ CvLat) |
| 23 | | 4thatlem0.u |
. . . . . . . . . 10
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 24 | 1, 6, 7, 18, 8, 15, 23, 12 | 4atexlemv 40067 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
| 25 | 17, 6, 18 | latmle2 18510 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
| 26 | 13, 14, 16, 25 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
| 27 | 12, 26 | eqbrtrid 5178 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ≤ 𝑊) |
| 28 | 1 | 4atexlempw 40051 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 29 | 28 | simprd 495 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑃 ≤ 𝑊) |
| 30 | | nbrne2 5163 |
. . . . . . . . . 10
⊢ ((𝑉 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑉 ≠ 𝑃) |
| 31 | 27, 29, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ≠ 𝑃) |
| 32 | 6, 7, 8 | cvlatexchb1 39335 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑉 ≠ 𝑃) → (𝑉 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆))) |
| 33 | 22, 24, 5, 4, 31, 32 | syl131anc 1385 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆))) |
| 34 | 21, 33 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆)) |
| 35 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆)) |
| 36 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑈 = 𝑉 → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑉)) |
| 37 | 36 | eqcomd 2743 |
. . . . . . 7
⊢ (𝑈 = 𝑉 → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑈)) |
| 38 | 1 | 4atexlemq 40053 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 39 | 17, 7, 8 | hlatjcl 39368 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 40 | 3, 4, 38, 39 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 41 | 17, 6, 18 | latmle1 18509 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
| 42 | 13, 40, 16, 41 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
| 43 | 23, 42 | eqbrtrid 5178 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
| 44 | 1, 6, 7, 18, 8, 15, 23 | 4atexlemu 40066 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| 45 | 17, 6, 18 | latmle2 18510 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
| 46 | 13, 40, 16, 45 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
| 47 | 23, 46 | eqbrtrid 5178 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝑊) |
| 48 | | nbrne2 5163 |
. . . . . . . . . 10
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑈 ≠ 𝑃) |
| 49 | 47, 29, 48 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ≠ 𝑃) |
| 50 | 6, 7, 8 | cvlatexchb1 39335 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑈 ≠ 𝑃) → (𝑈 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄))) |
| 51 | 22, 44, 38, 4, 49, 50 | syl131anc 1385 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄))) |
| 52 | 43, 51 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
| 53 | 37, 52 | sylan9eqr 2799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑄)) |
| 54 | 35, 53 | eqtr3d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → (𝑃 ∨ 𝑆) = (𝑃 ∨ 𝑄)) |
| 55 | 11, 54 | breqtrd 5169 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 56 | 55 | ex 412 |
. . 3
⊢ (𝜑 → (𝑈 = 𝑉 → 𝑆 ≤ (𝑃 ∨ 𝑄))) |
| 57 | 56 | necon3bd 2954 |
. 2
⊢ (𝜑 → (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) → 𝑈 ≠ 𝑉)) |
| 58 | 2, 57 | mpd 15 |
1
⊢ (𝜑 → 𝑈 ≠ 𝑉) |