Proof of Theorem 4atexlemunv
Step | Hyp | Ref
| Expression |
1 | | 4thatlem.ph |
. . 3
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
2 | 1 | 4atexlemnslpq 37997 |
. 2
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
3 | 1 | 4atexlemk 37988 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ HL) |
4 | 1 | 4atexlemp 37991 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
5 | 1 | 4atexlems 37993 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
6 | | 4thatlem0.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
7 | | 4thatlem0.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
8 | | 4thatlem0.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 6, 7, 8 | hlatlej2 37317 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
10 | 3, 4, 5, 9 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
12 | | 4thatlem0.v |
. . . . . . . . 9
⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
13 | 1 | 4atexlemkl 37998 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Lat) |
14 | 1, 7, 8 | 4atexlempsb 38001 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
15 | | 4thatlem0.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
16 | 1, 15 | 4atexlemwb 38000 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
17 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | | 4thatlem0.m |
. . . . . . . . . . 11
⊢ ∧ =
(meet‘𝐾) |
19 | 17, 6, 18 | latmle1 18097 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
20 | 13, 14, 16, 19 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
21 | 12, 20 | eqbrtrid 5105 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ≤ (𝑃 ∨ 𝑆)) |
22 | 1 | 4atexlemkc 37999 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ CvLat) |
23 | | 4thatlem0.u |
. . . . . . . . . 10
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
24 | 1, 6, 7, 18, 8, 15, 23, 12 | 4atexlemv 38006 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
25 | 17, 6, 18 | latmle2 18098 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
26 | 13, 14, 16, 25 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
27 | 12, 26 | eqbrtrid 5105 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ≤ 𝑊) |
28 | 1 | 4atexlempw 37990 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
29 | 28 | simprd 495 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑃 ≤ 𝑊) |
30 | | nbrne2 5090 |
. . . . . . . . . 10
⊢ ((𝑉 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑉 ≠ 𝑃) |
31 | 27, 29, 30 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ≠ 𝑃) |
32 | 6, 7, 8 | cvlatexchb1 37275 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑉 ≠ 𝑃) → (𝑉 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆))) |
33 | 22, 24, 5, 4, 31, 32 | syl131anc 1381 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆))) |
34 | 21, 33 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆)) |
35 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑆)) |
36 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑈 = 𝑉 → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑉)) |
37 | 36 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑈 = 𝑉 → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑈)) |
38 | 1 | 4atexlemq 37992 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
39 | 17, 7, 8 | hlatjcl 37308 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
40 | 3, 4, 38, 39 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
41 | 17, 6, 18 | latmle1 18097 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
42 | 13, 40, 16, 41 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
43 | 23, 42 | eqbrtrid 5105 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
44 | 1, 6, 7, 18, 8, 15, 23 | 4atexlemu 38005 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
45 | 17, 6, 18 | latmle2 18098 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
46 | 13, 40, 16, 45 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
47 | 23, 46 | eqbrtrid 5105 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝑊) |
48 | | nbrne2 5090 |
. . . . . . . . . 10
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑈 ≠ 𝑃) |
49 | 47, 29, 48 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ≠ 𝑃) |
50 | 6, 7, 8 | cvlatexchb1 37275 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑈 ≠ 𝑃) → (𝑈 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄))) |
51 | 22, 44, 38, 4, 49, 50 | syl131anc 1381 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄))) |
52 | 43, 51 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
53 | 37, 52 | sylan9eqr 2801 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → (𝑃 ∨ 𝑉) = (𝑃 ∨ 𝑄)) |
54 | 35, 53 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → (𝑃 ∨ 𝑆) = (𝑃 ∨ 𝑄)) |
55 | 11, 54 | breqtrd 5096 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 = 𝑉) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
56 | 55 | ex 412 |
. . 3
⊢ (𝜑 → (𝑈 = 𝑉 → 𝑆 ≤ (𝑃 ∨ 𝑄))) |
57 | 56 | necon3bd 2956 |
. 2
⊢ (𝜑 → (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) → 𝑈 ≠ 𝑉)) |
58 | 2, 57 | mpd 15 |
1
⊢ (𝜑 → 𝑈 ≠ 𝑉) |