Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemtlw Structured version   Visualization version   GIF version

Theorem 4atexlemtlw 37362
Description: Lemma for 4atexlem7 37370. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemtlw (𝜑𝑇 𝑊)

Proof of Theorem 4atexlemtlw
StepHypRef Expression
1 eqid 2801 . 2 (Base‘𝐾) = (Base‘𝐾)
2 4thatlem0.l . 2 = (le‘𝐾)
3 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
434atexlemkl 37352 . 2 (𝜑𝐾 ∈ Lat)
534atexlemt 37348 . . 3 (𝜑𝑇𝐴)
6 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 36584 . . 3 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
85, 7syl 17 . 2 (𝜑𝑇 ∈ (Base‘𝐾))
934atexlemk 37342 . . 3 (𝜑𝐾 ∈ HL)
10 4thatlem0.j . . . 4 = (join‘𝐾)
11 4thatlem0.m . . . 4 = (meet‘𝐾)
12 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
13 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
143, 2, 10, 11, 6, 12, 134atexlemu 37359 . . 3 (𝜑𝑈𝐴)
15 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
163, 2, 10, 11, 6, 12, 13, 154atexlemv 37360 . . 3 (𝜑𝑉𝐴)
171, 10, 6hlatjcl 36662 . . 3 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
189, 14, 16, 17syl3anc 1368 . 2 (𝜑 → (𝑈 𝑉) ∈ (Base‘𝐾))
193, 124atexlemwb 37354 . 2 (𝜑𝑊 ∈ (Base‘𝐾))
2034atexlemkc 37353 . . 3 (𝜑𝐾 ∈ CvLat)
213, 2, 10, 11, 6, 12, 13, 154atexlemunv 37361 . . 3 (𝜑𝑈𝑉)
2234atexlemutvt 37349 . . 3 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
236, 2, 10cvlsupr4 36640 . . 3 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇 (𝑈 𝑉))
2420, 14, 16, 5, 21, 22, 23syl132anc 1385 . 2 (𝜑𝑇 (𝑈 𝑉))
2534atexlemp 37345 . . . . . 6 (𝜑𝑃𝐴)
2634atexlemq 37346 . . . . . 6 (𝜑𝑄𝐴)
271, 10, 6hlatjcl 36662 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
289, 25, 26, 27syl3anc 1368 . . . . 5 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
291, 2, 11latmle2 17683 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
304, 28, 19, 29syl3anc 1368 . . . 4 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
3113, 30eqbrtrid 5068 . . 3 (𝜑𝑈 𝑊)
323, 10, 64atexlempsb 37355 . . . . 5 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
331, 2, 11latmle2 17683 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
344, 32, 19, 33syl3anc 1368 . . . 4 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
3515, 34eqbrtrid 5068 . . 3 (𝜑𝑉 𝑊)
361, 6atbase 36584 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3714, 36syl 17 . . . 4 (𝜑𝑈 ∈ (Base‘𝐾))
381, 6atbase 36584 . . . . 5 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
3916, 38syl 17 . . . 4 (𝜑𝑉 ∈ (Base‘𝐾))
401, 2, 10latjle12 17668 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 𝑊𝑉 𝑊) ↔ (𝑈 𝑉) 𝑊))
414, 37, 39, 19, 40syl13anc 1369 . . 3 (𝜑 → ((𝑈 𝑊𝑉 𝑊) ↔ (𝑈 𝑉) 𝑊))
4231, 35, 41mpbi2and 711 . 2 (𝜑 → (𝑈 𝑉) 𝑊)
431, 2, 4, 8, 18, 19, 24, 42lattrd 17664 1 (𝜑𝑇 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  joincjn 17550  meetcmee 17551  Latclat 17651  Atomscatm 36558  CvLatclc 36560  HLchlt 36645  LHypclh 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-lhyp 37283
This theorem is referenced by:  4atexlemntlpq  37363  4atexlemnclw  37365  4atexlemcnd  37367
  Copyright terms: Public domain W3C validator