Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemtlw Structured version   Visualization version   GIF version

Theorem 4atexlemtlw 38081
Description: Lemma for 4atexlem7 38089. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemtlw (𝜑𝑇 𝑊)

Proof of Theorem 4atexlemtlw
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐾) = (Base‘𝐾)
2 4thatlem0.l . 2 = (le‘𝐾)
3 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
434atexlemkl 38071 . 2 (𝜑𝐾 ∈ Lat)
534atexlemt 38067 . . 3 (𝜑𝑇𝐴)
6 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 37303 . . 3 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
85, 7syl 17 . 2 (𝜑𝑇 ∈ (Base‘𝐾))
934atexlemk 38061 . . 3 (𝜑𝐾 ∈ HL)
10 4thatlem0.j . . . 4 = (join‘𝐾)
11 4thatlem0.m . . . 4 = (meet‘𝐾)
12 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
13 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
143, 2, 10, 11, 6, 12, 134atexlemu 38078 . . 3 (𝜑𝑈𝐴)
15 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
163, 2, 10, 11, 6, 12, 13, 154atexlemv 38079 . . 3 (𝜑𝑉𝐴)
171, 10, 6hlatjcl 37381 . . 3 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
189, 14, 16, 17syl3anc 1370 . 2 (𝜑 → (𝑈 𝑉) ∈ (Base‘𝐾))
193, 124atexlemwb 38073 . 2 (𝜑𝑊 ∈ (Base‘𝐾))
2034atexlemkc 38072 . . 3 (𝜑𝐾 ∈ CvLat)
213, 2, 10, 11, 6, 12, 13, 154atexlemunv 38080 . . 3 (𝜑𝑈𝑉)
2234atexlemutvt 38068 . . 3 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
236, 2, 10cvlsupr4 37359 . . 3 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇 (𝑈 𝑉))
2420, 14, 16, 5, 21, 22, 23syl132anc 1387 . 2 (𝜑𝑇 (𝑈 𝑉))
2534atexlemp 38064 . . . . . 6 (𝜑𝑃𝐴)
2634atexlemq 38065 . . . . . 6 (𝜑𝑄𝐴)
271, 10, 6hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
289, 25, 26, 27syl3anc 1370 . . . . 5 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
291, 2, 11latmle2 18183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
304, 28, 19, 29syl3anc 1370 . . . 4 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
3113, 30eqbrtrid 5109 . . 3 (𝜑𝑈 𝑊)
323, 10, 64atexlempsb 38074 . . . . 5 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
331, 2, 11latmle2 18183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
344, 32, 19, 33syl3anc 1370 . . . 4 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
3515, 34eqbrtrid 5109 . . 3 (𝜑𝑉 𝑊)
361, 6atbase 37303 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3714, 36syl 17 . . . 4 (𝜑𝑈 ∈ (Base‘𝐾))
381, 6atbase 37303 . . . . 5 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
3916, 38syl 17 . . . 4 (𝜑𝑉 ∈ (Base‘𝐾))
401, 2, 10latjle12 18168 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 𝑊𝑉 𝑊) ↔ (𝑈 𝑉) 𝑊))
414, 37, 39, 19, 40syl13anc 1371 . . 3 (𝜑 → ((𝑈 𝑊𝑉 𝑊) ↔ (𝑈 𝑉) 𝑊))
4231, 35, 41mpbi2and 709 . 2 (𝜑 → (𝑈 𝑉) 𝑊)
431, 2, 4, 8, 18, 19, 24, 42lattrd 18164 1 (𝜑𝑇 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  Atomscatm 37277  CvLatclc 37279  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002
This theorem is referenced by:  4atexlemntlpq  38082  4atexlemnclw  38084  4atexlemcnd  38086
  Copyright terms: Public domain W3C validator