Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. 2
β’
(BaseβπΎ) =
(BaseβπΎ) |
2 | | 4thatlem0.l |
. 2
β’ β€ =
(leβπΎ) |
3 | | 4thatlem.ph |
. . 3
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π
β π΄ β§ Β¬ π
β€ π β§ (π β¨ π
) = (π β¨ π
)) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) |
4 | 3 | 4atexlemkl 38916 |
. 2
β’ (π β πΎ β Lat) |
5 | 3 | 4atexlemt 38912 |
. . 3
β’ (π β π β π΄) |
6 | | 4thatlem0.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
7 | 1, 6 | atbase 38147 |
. . 3
β’ (π β π΄ β π β (BaseβπΎ)) |
8 | 5, 7 | syl 17 |
. 2
β’ (π β π β (BaseβπΎ)) |
9 | 3 | 4atexlemk 38906 |
. . 3
β’ (π β πΎ β HL) |
10 | | 4thatlem0.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
11 | | 4thatlem0.m |
. . . 4
β’ β§ =
(meetβπΎ) |
12 | | 4thatlem0.h |
. . . 4
β’ π» = (LHypβπΎ) |
13 | | 4thatlem0.u |
. . . 4
β’ π = ((π β¨ π) β§ π) |
14 | 3, 2, 10, 11, 6, 12, 13 | 4atexlemu 38923 |
. . 3
β’ (π β π β π΄) |
15 | | 4thatlem0.v |
. . . 4
β’ π = ((π β¨ π) β§ π) |
16 | 3, 2, 10, 11, 6, 12, 13, 15 | 4atexlemv 38924 |
. . 3
β’ (π β π β π΄) |
17 | 1, 10, 6 | hlatjcl 38225 |
. . 3
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
18 | 9, 14, 16, 17 | syl3anc 1371 |
. 2
β’ (π β (π β¨ π) β (BaseβπΎ)) |
19 | 3, 12 | 4atexlemwb 38918 |
. 2
β’ (π β π β (BaseβπΎ)) |
20 | 3 | 4atexlemkc 38917 |
. . 3
β’ (π β πΎ β CvLat) |
21 | 3, 2, 10, 11, 6, 12, 13, 15 | 4atexlemunv 38925 |
. . 3
β’ (π β π β π) |
22 | 3 | 4atexlemutvt 38913 |
. . 3
β’ (π β (π β¨ π) = (π β¨ π)) |
23 | 6, 2, 10 | cvlsupr4 38203 |
. . 3
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ (π β¨ π) = (π β¨ π))) β π β€ (π β¨ π)) |
24 | 20, 14, 16, 5, 21, 22, 23 | syl132anc 1388 |
. 2
β’ (π β π β€ (π β¨ π)) |
25 | 3 | 4atexlemp 38909 |
. . . . . 6
β’ (π β π β π΄) |
26 | 3 | 4atexlemq 38910 |
. . . . . 6
β’ (π β π β π΄) |
27 | 1, 10, 6 | hlatjcl 38225 |
. . . . . 6
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
28 | 9, 25, 26, 27 | syl3anc 1371 |
. . . . 5
β’ (π β (π β¨ π) β (BaseβπΎ)) |
29 | 1, 2, 11 | latmle2 18414 |
. . . . 5
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ π) |
30 | 4, 28, 19, 29 | syl3anc 1371 |
. . . 4
β’ (π β ((π β¨ π) β§ π) β€ π) |
31 | 13, 30 | eqbrtrid 5182 |
. . 3
β’ (π β π β€ π) |
32 | 3, 10, 6 | 4atexlempsb 38919 |
. . . . 5
β’ (π β (π β¨ π) β (BaseβπΎ)) |
33 | 1, 2, 11 | latmle2 18414 |
. . . . 5
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ π) |
34 | 4, 32, 19, 33 | syl3anc 1371 |
. . . 4
β’ (π β ((π β¨ π) β§ π) β€ π) |
35 | 15, 34 | eqbrtrid 5182 |
. . 3
β’ (π β π β€ π) |
36 | 1, 6 | atbase 38147 |
. . . . 5
β’ (π β π΄ β π β (BaseβπΎ)) |
37 | 14, 36 | syl 17 |
. . . 4
β’ (π β π β (BaseβπΎ)) |
38 | 1, 6 | atbase 38147 |
. . . . 5
β’ (π β π΄ β π β (BaseβπΎ)) |
39 | 16, 38 | syl 17 |
. . . 4
β’ (π β π β (BaseβπΎ)) |
40 | 1, 2, 10 | latjle12 18399 |
. . . 4
β’ ((πΎ β Lat β§ (π β (BaseβπΎ) β§ π β (BaseβπΎ) β§ π β (BaseβπΎ))) β ((π β€ π β§ π β€ π) β (π β¨ π) β€ π)) |
41 | 4, 37, 39, 19, 40 | syl13anc 1372 |
. . 3
β’ (π β ((π β€ π β§ π β€ π) β (π β¨ π) β€ π)) |
42 | 31, 35, 41 | mpbi2and 710 |
. 2
β’ (π β (π β¨ π) β€ π) |
43 | 1, 2, 4, 8, 18, 19, 24, 42 | lattrd 18395 |
1
β’ (π β π β€ π) |