Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemtlw Structured version   Visualization version   GIF version

Theorem 4atexlemtlw 40086
Description: Lemma for 4atexlem7 40094. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemtlw (𝜑𝑇 𝑊)

Proof of Theorem 4atexlemtlw
StepHypRef Expression
1 eqid 2735 . 2 (Base‘𝐾) = (Base‘𝐾)
2 4thatlem0.l . 2 = (le‘𝐾)
3 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
434atexlemkl 40076 . 2 (𝜑𝐾 ∈ Lat)
534atexlemt 40072 . . 3 (𝜑𝑇𝐴)
6 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 39307 . . 3 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
85, 7syl 17 . 2 (𝜑𝑇 ∈ (Base‘𝐾))
934atexlemk 40066 . . 3 (𝜑𝐾 ∈ HL)
10 4thatlem0.j . . . 4 = (join‘𝐾)
11 4thatlem0.m . . . 4 = (meet‘𝐾)
12 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
13 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
143, 2, 10, 11, 6, 12, 134atexlemu 40083 . . 3 (𝜑𝑈𝐴)
15 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
163, 2, 10, 11, 6, 12, 13, 154atexlemv 40084 . . 3 (𝜑𝑉𝐴)
171, 10, 6hlatjcl 39385 . . 3 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
189, 14, 16, 17syl3anc 1373 . 2 (𝜑 → (𝑈 𝑉) ∈ (Base‘𝐾))
193, 124atexlemwb 40078 . 2 (𝜑𝑊 ∈ (Base‘𝐾))
2034atexlemkc 40077 . . 3 (𝜑𝐾 ∈ CvLat)
213, 2, 10, 11, 6, 12, 13, 154atexlemunv 40085 . . 3 (𝜑𝑈𝑉)
2234atexlemutvt 40073 . . 3 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
236, 2, 10cvlsupr4 39363 . . 3 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇 (𝑈 𝑉))
2420, 14, 16, 5, 21, 22, 23syl132anc 1390 . 2 (𝜑𝑇 (𝑈 𝑉))
2534atexlemp 40069 . . . . . 6 (𝜑𝑃𝐴)
2634atexlemq 40070 . . . . . 6 (𝜑𝑄𝐴)
271, 10, 6hlatjcl 39385 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
289, 25, 26, 27syl3anc 1373 . . . . 5 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
291, 2, 11latmle2 18475 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
304, 28, 19, 29syl3anc 1373 . . . 4 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
3113, 30eqbrtrid 5154 . . 3 (𝜑𝑈 𝑊)
323, 10, 64atexlempsb 40079 . . . . 5 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
331, 2, 11latmle2 18475 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
344, 32, 19, 33syl3anc 1373 . . . 4 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
3515, 34eqbrtrid 5154 . . 3 (𝜑𝑉 𝑊)
361, 6atbase 39307 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3714, 36syl 17 . . . 4 (𝜑𝑈 ∈ (Base‘𝐾))
381, 6atbase 39307 . . . . 5 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
3916, 38syl 17 . . . 4 (𝜑𝑉 ∈ (Base‘𝐾))
401, 2, 10latjle12 18460 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 𝑊𝑉 𝑊) ↔ (𝑈 𝑉) 𝑊))
414, 37, 39, 19, 40syl13anc 1374 . . 3 (𝜑 → ((𝑈 𝑊𝑉 𝑊) ↔ (𝑈 𝑉) 𝑊))
4231, 35, 41mpbi2and 712 . 2 (𝜑 → (𝑈 𝑉) 𝑊)
431, 2, 4, 8, 18, 19, 24, 42lattrd 18456 1 (𝜑𝑇 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  CvLatclc 39283  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by:  4atexlemntlpq  40087  4atexlemnclw  40089  4atexlemcnd  40091
  Copyright terms: Public domain W3C validator