![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3lexlogpow5ineq4 | Structured version Visualization version GIF version |
Description: Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024.) |
Ref | Expression |
---|---|
3lexlogpow5ineq4.1 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
3lexlogpow5ineq4.2 | ⊢ (𝜑 → 3 ≤ 𝑋) |
Ref | Expression |
---|---|
3lexlogpow5ineq4 | ⊢ (𝜑 → 9 < ((2 logb 𝑋)↑5)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9re 12341 | . . 3 ⊢ 9 ∈ ℝ | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 9 ∈ ℝ) |
3 | 1nn0 12518 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
4 | 1nn 12253 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
5 | 3, 4 | decnncl 12727 | . . . . . 6 ⊢ ;11 ∈ ℕ |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → ;11 ∈ ℕ) |
7 | 6 | nnred 12257 | . . . 4 ⊢ (𝜑 → ;11 ∈ ℝ) |
8 | 7re 12335 | . . . . 5 ⊢ 7 ∈ ℝ | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 7 ∈ ℝ) |
10 | 0red 11247 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
11 | 7pos 12353 | . . . . . . 7 ⊢ 0 < 7 | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 7) |
13 | 10, 12 | ltned 11380 | . . . . 5 ⊢ (𝜑 → 0 ≠ 7) |
14 | 13 | necomd 2986 | . . . 4 ⊢ (𝜑 → 7 ≠ 0) |
15 | 7, 9, 14 | redivcld 12072 | . . 3 ⊢ (𝜑 → (;11 / 7) ∈ ℝ) |
16 | 5nn0 12522 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 5 ∈ ℕ0) |
18 | 15, 17 | reexpcld 14159 | . 2 ⊢ (𝜑 → ((;11 / 7)↑5) ∈ ℝ) |
19 | 2re 12316 | . . . . 5 ⊢ 2 ∈ ℝ | |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℝ) |
21 | 2pos 12345 | . . . . 5 ⊢ 0 < 2 | |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 < 2) |
23 | 3lexlogpow5ineq4.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
24 | 3re 12322 | . . . . . 6 ⊢ 3 ∈ ℝ | |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → 3 ∈ ℝ) |
26 | 3pos 12347 | . . . . . 6 ⊢ 0 < 3 | |
27 | 26 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 < 3) |
28 | 3lexlogpow5ineq4.2 | . . . . 5 ⊢ (𝜑 → 3 ≤ 𝑋) | |
29 | 10, 25, 23, 27, 28 | ltletrd 11404 | . . . 4 ⊢ (𝜑 → 0 < 𝑋) |
30 | 1red 11245 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℝ) | |
31 | 1lt2 12413 | . . . . . . 7 ⊢ 1 < 2 | |
32 | 31 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 < 2) |
33 | 30, 32 | ltned 11380 | . . . . 5 ⊢ (𝜑 → 1 ≠ 2) |
34 | 33 | necomd 2986 | . . . 4 ⊢ (𝜑 → 2 ≠ 1) |
35 | 20, 22, 23, 29, 34 | relogbcld 41512 | . . 3 ⊢ (𝜑 → (2 logb 𝑋) ∈ ℝ) |
36 | 35, 17 | reexpcld 14159 | . 2 ⊢ (𝜑 → ((2 logb 𝑋)↑5) ∈ ℝ) |
37 | 3lexlogpow5ineq1 41594 | . . 3 ⊢ 9 < ((;11 / 7)↑5) | |
38 | 37 | a1i 11 | . 2 ⊢ (𝜑 → 9 < ((;11 / 7)↑5)) |
39 | 23, 28 | 3lexlogpow5ineq2 41595 | . 2 ⊢ (𝜑 → ((;11 / 7)↑5) ≤ ((2 logb 𝑋)↑5)) |
40 | 2, 18, 36, 38, 39 | ltletrd 11404 | 1 ⊢ (𝜑 → 9 < ((2 logb 𝑋)↑5)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 class class class wbr 5148 (class class class)co 7417 ℝcr 11137 0cc0 11138 1c1 11139 < clt 11278 ≤ cle 11279 / cdiv 11901 ℕcn 12242 2c2 12297 3c3 12298 5c5 12300 7c7 12302 9c9 12304 ℕ0cn0 12502 ;cdc 12707 ↑cexp 14058 logb clogb 26726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-of 7683 df-om 7870 df-1st 7992 df-2nd 7993 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8845 df-pm 8846 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ioo 13360 df-ioc 13361 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-mod 13867 df-seq 13999 df-exp 14059 df-fac 14265 df-bc 14294 df-hash 14322 df-shft 15046 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-ef 16043 df-sin 16045 df-cos 16046 df-pi 16048 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19028 df-cntz 19272 df-cmn 19741 df-psmet 21275 df-xmet 21276 df-met 21277 df-bl 21278 df-mopn 21279 df-fbas 21280 df-fg 21281 df-cnfld 21284 df-top 22826 df-topon 22843 df-topsp 22865 df-bases 22879 df-cld 22953 df-ntr 22954 df-cls 22955 df-nei 23032 df-lp 23070 df-perf 23071 df-cn 23161 df-cnp 23162 df-haus 23249 df-tx 23496 df-hmeo 23689 df-fil 23780 df-fm 23872 df-flim 23873 df-flf 23874 df-xms 24256 df-ms 24257 df-tms 24258 df-cncf 24828 df-limc 25825 df-dv 25826 df-log 26520 df-cxp 26521 df-logb 26727 |
This theorem is referenced by: 3lexlogpow5ineq3 41597 aks4d1lem1 41602 aks4d1p1 41616 aks4d1p6 41621 aks4d1p7d1 41622 aks4d1p7 41623 aks4d1p8 41627 |
Copyright terms: Public domain | W3C validator |