Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3lexlogpow5ineq4 Structured version   Visualization version   GIF version

Theorem 3lexlogpow5ineq4 42052
Description: Sharper logarithm inequality chain. (Contributed by metakunt, 21-Aug-2024.)
Hypotheses
Ref Expression
3lexlogpow5ineq4.1 (𝜑𝑋 ∈ ℝ)
3lexlogpow5ineq4.2 (𝜑 → 3 ≤ 𝑋)
Assertion
Ref Expression
3lexlogpow5ineq4 (𝜑 → 9 < ((2 logb 𝑋)↑5))

Proof of Theorem 3lexlogpow5ineq4
StepHypRef Expression
1 9re 12372 . . 3 9 ∈ ℝ
21a1i 11 . 2 (𝜑 → 9 ∈ ℝ)
3 1nn0 12549 . . . . . . 7 1 ∈ ℕ0
4 1nn 12284 . . . . . . 7 1 ∈ ℕ
53, 4decnncl 12760 . . . . . 6 11 ∈ ℕ
65a1i 11 . . . . 5 (𝜑11 ∈ ℕ)
76nnred 12288 . . . 4 (𝜑11 ∈ ℝ)
8 7re 12366 . . . . 5 7 ∈ ℝ
98a1i 11 . . . 4 (𝜑 → 7 ∈ ℝ)
10 0red 11271 . . . . . 6 (𝜑 → 0 ∈ ℝ)
11 7pos 12384 . . . . . . 7 0 < 7
1211a1i 11 . . . . . 6 (𝜑 → 0 < 7)
1310, 12ltned 11404 . . . . 5 (𝜑 → 0 ≠ 7)
1413necomd 2996 . . . 4 (𝜑 → 7 ≠ 0)
157, 9, 14redivcld 12102 . . 3 (𝜑 → (11 / 7) ∈ ℝ)
16 5nn0 12553 . . . 4 5 ∈ ℕ0
1716a1i 11 . . 3 (𝜑 → 5 ∈ ℕ0)
1815, 17reexpcld 14209 . 2 (𝜑 → ((11 / 7)↑5) ∈ ℝ)
19 2re 12347 . . . . 5 2 ∈ ℝ
2019a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
21 2pos 12376 . . . . 5 0 < 2
2221a1i 11 . . . 4 (𝜑 → 0 < 2)
23 3lexlogpow5ineq4.1 . . . 4 (𝜑𝑋 ∈ ℝ)
24 3re 12353 . . . . . 6 3 ∈ ℝ
2524a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
26 3pos 12378 . . . . . 6 0 < 3
2726a1i 11 . . . . 5 (𝜑 → 0 < 3)
28 3lexlogpow5ineq4.2 . . . . 5 (𝜑 → 3 ≤ 𝑋)
2910, 25, 23, 27, 28ltletrd 11428 . . . 4 (𝜑 → 0 < 𝑋)
30 1red 11269 . . . . . 6 (𝜑 → 1 ∈ ℝ)
31 1lt2 12444 . . . . . . 7 1 < 2
3231a1i 11 . . . . . 6 (𝜑 → 1 < 2)
3330, 32ltned 11404 . . . . 5 (𝜑 → 1 ≠ 2)
3433necomd 2996 . . . 4 (𝜑 → 2 ≠ 1)
3520, 22, 23, 29, 34relogbcld 41969 . . 3 (𝜑 → (2 logb 𝑋) ∈ ℝ)
3635, 17reexpcld 14209 . 2 (𝜑 → ((2 logb 𝑋)↑5) ∈ ℝ)
37 3lexlogpow5ineq1 42050 . . 3 9 < ((11 / 7)↑5)
3837a1i 11 . 2 (𝜑 → 9 < ((11 / 7)↑5))
3923, 283lexlogpow5ineq2 42051 . 2 (𝜑 → ((11 / 7)↑5) ≤ ((2 logb 𝑋)↑5))
402, 18, 36, 38, 39ltletrd 11428 1 (𝜑 → 9 < ((2 logb 𝑋)↑5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5151  (class class class)co 7438  cr 11161  0cc0 11162  1c1 11163   < clt 11302  cle 11303   / cdiv 11927  cn 12273  2c2 12328  3c3 12329  5c5 12331  7c7 12333  9c9 12335  0cn0 12533  cdc 12740  cexp 14108   logb clogb 26833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ioo 13397  df-ioc 13398  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-shft 15112  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15729  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-0g 17497  df-gsum 17498  df-topgen 17499  df-pt 17500  df-prds 17503  df-xrs 17558  df-qtop 17563  df-imas 17564  df-xps 17566  df-mre 17640  df-mrc 17641  df-acs 17643  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-cnfld 21392  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-lp 23169  df-perf 23170  df-cn 23260  df-cnp 23261  df-haus 23348  df-tx 23595  df-hmeo 23788  df-fil 23879  df-fm 23971  df-flim 23972  df-flf 23973  df-xms 24355  df-ms 24356  df-tms 24357  df-cncf 24929  df-limc 25927  df-dv 25928  df-log 26624  df-cxp 26625  df-logb 26834
This theorem is referenced by:  3lexlogpow5ineq3  42053  aks4d1lem1  42058  aks4d1p1  42072  aks4d1p6  42077  aks4d1p7d1  42078  aks4d1p7  42079  aks4d1p8  42083
  Copyright terms: Public domain W3C validator