|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 6lt8 | Structured version Visualization version GIF version | ||
| Description: 6 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| 6lt8 | ⊢ 6 < 8 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6lt7 12452 | . 2 ⊢ 6 < 7 | |
| 2 | 7lt8 12458 | . 2 ⊢ 7 < 8 | |
| 3 | 6re 12356 | . . 3 ⊢ 6 ∈ ℝ | |
| 4 | 7re 12359 | . . 3 ⊢ 7 ∈ ℝ | |
| 5 | 8re 12362 | . . 3 ⊢ 8 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11387 | . 2 ⊢ ((6 < 7 ∧ 7 < 8) → 6 < 8) | 
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 6 < 8 | 
| Colors of variables: wff setvar class | 
| Syntax hints: class class class wbr 5143 < clt 11295 6c6 12325 7c7 12326 8c8 12327 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 | 
| This theorem is referenced by: 5lt8 12460 631prm 17164 slotsdifipndx 17379 ipsstr 17380 phlstr 17390 sralemOLD 21176 sravscaOLD 21186 chtub 27256 bpos1 27327 | 
| Copyright terms: Public domain | W3C validator |