Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p2 | Structured version Visualization version GIF version |
Description: Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024.) |
Ref | Expression |
---|---|
aks4d1p2.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
aks4d1p2.2 | ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) |
aks4d1p2.3 | ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) |
Ref | Expression |
---|---|
aks4d1p2 | ⊢ (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p2.3 | . . . . . 6 ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
3 | 2re 11929 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ) |
5 | 2pos 11958 | . . . . . . . . 9 ⊢ 0 < 2 | |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 2) |
7 | aks4d1p2.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
8 | eluzelz 12473 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 9 | zred 12307 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
11 | 0red 10861 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
12 | 3re 11935 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
13 | 12 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 3 ∈ ℝ) |
14 | 3pos 11960 | . . . . . . . . . 10 ⊢ 0 < 3 | |
15 | 14 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 3) |
16 | eluzle 12476 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
17 | 7, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 3 ≤ 𝑁) |
18 | 11, 13, 10, 15, 17 | ltletrd 11017 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑁) |
19 | 1red 10859 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℝ) | |
20 | 1lt2 12026 | . . . . . . . . . . 11 ⊢ 1 < 2 | |
21 | 20 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 1 < 2) |
22 | 19, 21 | ltned 10993 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≠ 2) |
23 | 22 | necomd 2997 | . . . . . . . 8 ⊢ (𝜑 → 2 ≠ 1) |
24 | 4, 6, 10, 18, 23 | relogbcld 39741 | . . . . . . 7 ⊢ (𝜑 → (2 logb 𝑁) ∈ ℝ) |
25 | 5nn0 12135 | . . . . . . . 8 ⊢ 5 ∈ ℕ0 | |
26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 5 ∈ ℕ0) |
27 | 24, 26 | reexpcld 13758 | . . . . . 6 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ) |
28 | ceilcl 13442 | . . . . . 6 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
30 | 2, 29 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
31 | 29 | zred 12307 | . . . . . 6 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ) |
32 | 7re 11948 | . . . . . . . 8 ⊢ 7 ∈ ℝ | |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 7 ∈ ℝ) |
34 | 7pos 11966 | . . . . . . . 8 ⊢ 0 < 7 | |
35 | 34 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 7) |
36 | 10, 17 | 3lexlogpow5ineq3 39826 | . . . . . . 7 ⊢ (𝜑 → 7 < ((2 logb 𝑁)↑5)) |
37 | 11, 33, 27, 35, 36 | lttrd 11018 | . . . . . 6 ⊢ (𝜑 → 0 < ((2 logb 𝑁)↑5)) |
38 | ceilge 13444 | . . . . . . 7 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) | |
39 | 27, 38 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) |
40 | 11, 27, 31, 37, 39 | ltletrd 11017 | . . . . 5 ⊢ (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5))) |
41 | 40, 2 | breqtrrd 5096 | . . . 4 ⊢ (𝜑 → 0 < 𝐵) |
42 | 30, 41 | jca 515 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ 0 < 𝐵)) |
43 | elnnz 12211 | . . 3 ⊢ (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵)) | |
44 | 42, 43 | sylibr 237 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
45 | 33, 27, 36 | ltled 11005 | . . . 4 ⊢ (𝜑 → 7 ≤ ((2 logb 𝑁)↑5)) |
46 | 33, 27, 31, 45, 39 | letrd 11014 | . . 3 ⊢ (𝜑 → 7 ≤ (⌈‘((2 logb 𝑁)↑5))) |
47 | 46, 2 | breqtrrd 5096 | . 2 ⊢ (𝜑 → 7 ≤ 𝐵) |
48 | 44, 47 | lcmineqlem 39821 | 1 ⊢ (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 class class class wbr 5068 ‘cfv 6398 (class class class)co 7232 ℝcr 10753 0cc0 10754 1c1 10755 · cmul 10759 < clt 10892 ≤ cle 10893 − cmin 11087 ℕcn 11855 2c2 11910 3c3 11911 5c5 11913 7c7 11915 ℕ0cn0 12115 ℤcz 12201 ℤ≥cuz 12463 ...cfz 13120 ⌊cfl 13390 ⌈cceil 13391 ↑cexp 13660 ∏cprod 15492 lcmclcmf 16171 logb clogb 25671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cc 10074 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-symdif 4172 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-disj 5034 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-ofr 7489 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-oadd 8227 df-omul 8228 df-er 8412 df-map 8531 df-pm 8532 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-dju 9542 df-card 9580 df-acn 9583 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-ioo 12964 df-ioc 12965 df-ico 12966 df-icc 12967 df-fz 13121 df-fzo 13264 df-fl 13392 df-ceil 13393 df-mod 13468 df-seq 13600 df-exp 13661 df-fac 13865 df-bc 13894 df-hash 13922 df-shft 14655 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-limsup 15057 df-clim 15074 df-rlim 15075 df-sum 15275 df-prod 15493 df-ef 15654 df-sin 15656 df-cos 15657 df-pi 15659 df-dvds 15841 df-gcd 16079 df-lcm 16172 df-lcmf 16173 df-prm 16254 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-starv 16842 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-unif 16850 df-hom 16851 df-cco 16852 df-rest 16952 df-topn 16953 df-0g 16971 df-gsum 16972 df-topgen 16973 df-pt 16974 df-prds 16977 df-xrs 17032 df-qtop 17037 df-imas 17038 df-xps 17040 df-mre 17114 df-mrc 17115 df-acs 17117 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-mulg 18514 df-cntz 18736 df-cmn 19197 df-psmet 20380 df-xmet 20381 df-met 20382 df-bl 20383 df-mopn 20384 df-fbas 20385 df-fg 20386 df-cnfld 20389 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-lp 22057 df-perf 22058 df-cn 22148 df-cnp 22149 df-haus 22236 df-cmp 22308 df-tx 22483 df-hmeo 22676 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-xms 23242 df-ms 23243 df-tms 23244 df-cncf 23799 df-ovol 24385 df-vol 24386 df-mbf 24540 df-itg1 24541 df-itg2 24542 df-ibl 24543 df-itg 24544 df-0p 24591 df-limc 24787 df-dv 24788 df-log 25469 df-cxp 25470 df-logb 25672 |
This theorem is referenced by: aks4d1p3 39846 |
Copyright terms: Public domain | W3C validator |