Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p3 Structured version   Visualization version   GIF version

Theorem aks4d1p1p3 42071
Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p3.2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p3.3 (𝜑 → 3 ≤ 𝑁)
Assertion
Ref Expression
aks4d1p1p3 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))

Proof of Theorem aks4d1p1p3
StepHypRef Expression
1 2re 12341 . . . . . . 7 2 ∈ ℝ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
3 2pos 12370 . . . . . . 7 0 < 2
43a1i 11 . . . . . 6 (𝜑 → 0 < 2)
5 aks4d1p1p3.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
65nnred 12282 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
75nngt0d 12316 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
8 1red 11263 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
9 1lt2 12438 . . . . . . . . . . . . . 14 1 < 2
109a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
118, 10ltned 11398 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
1211necomd 2995 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
132, 4, 6, 7, 12relogbcld 41975 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12548 . . . . . . . . . . 11 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . 10 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 14204 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13883 . . . . . . . . 9 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12724 . . . . . . 7 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p3.2 . . . . . . . . 9 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . 8 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2825 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 257 . . . . . 6 (𝜑𝐵 ∈ ℝ)
24 0red 11265 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
25 7re 12360 . . . . . . . 8 7 ∈ ℝ
2625a1i 11 . . . . . . 7 (𝜑 → 7 ∈ ℝ)
27 7pos 12378 . . . . . . . 8 0 < 7
2827a1i 11 . . . . . . 7 (𝜑 → 0 < 7)
29 aks4d1p1p3.3 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
306, 293lexlogpow5ineq3 42059 . . . . . . . . 9 (𝜑 → 7 < ((2 logb 𝑁)↑5))
31 ceilge 13886 . . . . . . . . . 10 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3216, 31syl 17 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3326, 16, 19, 30, 32ltletrd 11422 . . . . . . . 8 (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5)))
3421eqcomd 2742 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
3533, 34breqtrd 5168 . . . . . . 7 (𝜑 → 7 < 𝐵)
3624, 26, 23, 28, 35lttrd 11423 . . . . . 6 (𝜑 → 0 < 𝐵)
372, 4, 23, 36, 12relogbcld 41975 . . . . 5 (𝜑 → (2 logb 𝐵) ∈ ℝ)
3837flcld 13839 . . . 4 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
3938zred 12724 . . 3 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
4016, 8readdcld 11291 . . . 4 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
4116ltp1d 12199 . . . . . 6 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
4226, 16, 40, 30, 41lttrd 11423 . . . . 5 (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1))
4324, 26, 40, 28, 42lttrd 11423 . . . 4 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
442, 4, 40, 43, 12relogbcld 41975 . . 3 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
45 flle 13840 . . . 4 ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵))
4637, 45syl 17 . . 3 (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵))
47 ceilm1lt 13889 . . . . . . 7 (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5))
4816, 47syl 17 . . . . . 6 (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5))
4919, 8, 16ltsubaddd 11860 . . . . . 6 (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)))
5048, 49mpbid 232 . . . . 5 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))
5121, 50eqbrtrd 5164 . . . 4 (𝜑𝐵 < (((2 logb 𝑁)↑5) + 1))
52 2z 12651 . . . . . . 7 2 ∈ ℤ
5352a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
5453uzidd 12895 . . . . 5 (𝜑 → 2 ∈ (ℤ‘2))
5523, 36elrpd 13075 . . . . 5 (𝜑𝐵 ∈ ℝ+)
5640, 43elrpd 13075 . . . . 5 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+)
57 logblt 26828 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))))
5854, 55, 56, 57syl3anc 1372 . . . 4 (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))))
5951, 58mpbid 232 . . 3 (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))
6039, 37, 44, 46, 59lelttrd 11420 . 2 (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)))
61 3re 12347 . . . . 5 3 ∈ ℝ
6261a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
63 1lt3 12440 . . . . 5 1 < 3
6463a1i 11 . . . 4 (𝜑 → 1 < 3)
658, 62, 6, 64, 29ltletrd 11422 . . 3 (𝜑 → 1 < 𝑁)
666, 65, 39, 44cxpltd 26762 . 2 (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))))
6760, 66mpbid 232 1 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  2c2 12322  3c3 12323  5c5 12325  7c7 12327  0cn0 12528  cz 12615  cuz 12879  +crp 13035  cfl 13831  cceil 13832  cexp 14103  𝑐ccxp 26598   logb clogb 26808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-ceil 13834  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599  df-cxp 26600  df-logb 26809
This theorem is referenced by:  aks4d1p1p2  42072
  Copyright terms: Public domain W3C validator