| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p1p3 | Structured version Visualization version GIF version | ||
| Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| aks4d1p1p3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks4d1p1p3.2 | ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) |
| aks4d1p1p3.3 | ⊢ (𝜑 → 3 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| aks4d1p1p3 | ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12202 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | 2pos 12231 | . . . . . . 7 ⊢ 0 < 2 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 2) |
| 5 | aks4d1p1p3.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnred 12143 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 5 | nngt0d 12177 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 < 𝑁) |
| 8 | 1red 11116 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 9 | 1lt2 12294 | . . . . . . . . . . . . . 14 ⊢ 1 < 2 | |
| 10 | 9 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 < 2) |
| 11 | 8, 10 | ltned 11252 | . . . . . . . . . . . 12 ⊢ (𝜑 → 1 ≠ 2) |
| 12 | 11 | necomd 2980 | . . . . . . . . . . 11 ⊢ (𝜑 → 2 ≠ 1) |
| 13 | 2, 4, 6, 7, 12 | relogbcld 41966 | . . . . . . . . . 10 ⊢ (𝜑 → (2 logb 𝑁) ∈ ℝ) |
| 14 | 5nn0 12404 | . . . . . . . . . . 11 ⊢ 5 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 5 ∈ ℕ0) |
| 16 | 13, 15 | reexpcld 14070 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ) |
| 17 | ceilcl 13746 | . . . . . . . . 9 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
| 19 | 18 | zred 12580 | . . . . . . 7 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ) |
| 20 | aks4d1p1p3.2 | . . . . . . . . 9 ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
| 22 | 21 | eleq1d 2813 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)) |
| 23 | 19, 22 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 24 | 0red 11118 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 7re 12221 | . . . . . . . 8 ⊢ 7 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 7 ∈ ℝ) |
| 27 | 7pos 12239 | . . . . . . . 8 ⊢ 0 < 7 | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 7) |
| 29 | aks4d1p1p3.3 | . . . . . . . . . 10 ⊢ (𝜑 → 3 ≤ 𝑁) | |
| 30 | 6, 29 | 3lexlogpow5ineq3 42050 | . . . . . . . . 9 ⊢ (𝜑 → 7 < ((2 logb 𝑁)↑5)) |
| 31 | ceilge 13749 | . . . . . . . . . 10 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) | |
| 32 | 16, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) |
| 33 | 26, 16, 19, 30, 32 | ltletrd 11276 | . . . . . . . 8 ⊢ (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5))) |
| 34 | 21 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵) |
| 35 | 33, 34 | breqtrd 5118 | . . . . . . 7 ⊢ (𝜑 → 7 < 𝐵) |
| 36 | 24, 26, 23, 28, 35 | lttrd 11277 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐵) |
| 37 | 2, 4, 23, 36, 12 | relogbcld 41966 | . . . . 5 ⊢ (𝜑 → (2 logb 𝐵) ∈ ℝ) |
| 38 | 37 | flcld 13702 | . . . 4 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ) |
| 39 | 38 | zred 12580 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ) |
| 40 | 16, 8 | readdcld 11144 | . . . 4 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ) |
| 41 | 16 | ltp1d 12055 | . . . . . 6 ⊢ (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1)) |
| 42 | 26, 16, 40, 30, 41 | lttrd 11277 | . . . . 5 ⊢ (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1)) |
| 43 | 24, 26, 40, 28, 42 | lttrd 11277 | . . . 4 ⊢ (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1)) |
| 44 | 2, 4, 40, 43, 12 | relogbcld 41966 | . . 3 ⊢ (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ) |
| 45 | flle 13703 | . . . 4 ⊢ ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) | |
| 46 | 37, 45 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) |
| 47 | ceilm1lt 13752 | . . . . . . 7 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) | |
| 48 | 16, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) |
| 49 | 19, 8, 16 | ltsubaddd 11716 | . . . . . 6 ⊢ (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))) |
| 50 | 48, 49 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)) |
| 51 | 21, 50 | eqbrtrd 5114 | . . . 4 ⊢ (𝜑 → 𝐵 < (((2 logb 𝑁)↑5) + 1)) |
| 52 | 2z 12507 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 53 | 52 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 54 | 53 | uzidd 12751 | . . . . 5 ⊢ (𝜑 → 2 ∈ (ℤ≥‘2)) |
| 55 | 23, 36 | elrpd 12934 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| 56 | 40, 43 | elrpd 12934 | . . . . 5 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) |
| 57 | logblt 26692 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) | |
| 58 | 54, 55, 56, 57 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) |
| 59 | 51, 58 | mpbid 232 | . . 3 ⊢ (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
| 60 | 39, 37, 44, 46, 59 | lelttrd 11274 | . 2 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
| 61 | 3re 12208 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
| 63 | 1lt3 12296 | . . . . 5 ⊢ 1 < 3 | |
| 64 | 63 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 < 3) |
| 65 | 8, 62, 6, 64, 29 | ltletrd 11276 | . . 3 ⊢ (𝜑 → 1 < 𝑁) |
| 66 | 6, 65, 39, 44 | cxpltd 26626 | . 2 ⊢ (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))) |
| 67 | 60, 66 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 − cmin 11347 ℕcn 12128 2c2 12183 3c3 12184 5c5 12186 7c7 12188 ℕ0cn0 12384 ℤcz 12471 ℤ≥cuz 12735 ℝ+crp 12893 ⌊cfl 13694 ⌈cceil 13695 ↑cexp 13968 ↑𝑐ccxp 26462 logb clogb 26672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-ceil 13697 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 df-cxp 26464 df-logb 26673 |
| This theorem is referenced by: aks4d1p1p2 42063 |
| Copyright terms: Public domain | W3C validator |