| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p1p3 | Structured version Visualization version GIF version | ||
| Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| aks4d1p1p3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks4d1p1p3.2 | ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) |
| aks4d1p1p3.3 | ⊢ (𝜑 → 3 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| aks4d1p1p3 | ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12238 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | 2pos 12267 | . . . . . . 7 ⊢ 0 < 2 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 2) |
| 5 | aks4d1p1p3.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnred 12179 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 5 | nngt0d 12213 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 < 𝑁) |
| 8 | 1red 11153 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 9 | 1lt2 12330 | . . . . . . . . . . . . . 14 ⊢ 1 < 2 | |
| 10 | 9 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 < 2) |
| 11 | 8, 10 | ltned 11288 | . . . . . . . . . . . 12 ⊢ (𝜑 → 1 ≠ 2) |
| 12 | 11 | necomd 2980 | . . . . . . . . . . 11 ⊢ (𝜑 → 2 ≠ 1) |
| 13 | 2, 4, 6, 7, 12 | relogbcld 41955 | . . . . . . . . . 10 ⊢ (𝜑 → (2 logb 𝑁) ∈ ℝ) |
| 14 | 5nn0 12440 | . . . . . . . . . . 11 ⊢ 5 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 5 ∈ ℕ0) |
| 16 | 13, 15 | reexpcld 14106 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ) |
| 17 | ceilcl 13782 | . . . . . . . . 9 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
| 19 | 18 | zred 12616 | . . . . . . 7 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ) |
| 20 | aks4d1p1p3.2 | . . . . . . . . 9 ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
| 22 | 21 | eleq1d 2813 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)) |
| 23 | 19, 22 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 24 | 0red 11155 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 7re 12257 | . . . . . . . 8 ⊢ 7 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 7 ∈ ℝ) |
| 27 | 7pos 12275 | . . . . . . . 8 ⊢ 0 < 7 | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 7) |
| 29 | aks4d1p1p3.3 | . . . . . . . . . 10 ⊢ (𝜑 → 3 ≤ 𝑁) | |
| 30 | 6, 29 | 3lexlogpow5ineq3 42039 | . . . . . . . . 9 ⊢ (𝜑 → 7 < ((2 logb 𝑁)↑5)) |
| 31 | ceilge 13785 | . . . . . . . . . 10 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) | |
| 32 | 16, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) |
| 33 | 26, 16, 19, 30, 32 | ltletrd 11312 | . . . . . . . 8 ⊢ (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5))) |
| 34 | 21 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵) |
| 35 | 33, 34 | breqtrd 5128 | . . . . . . 7 ⊢ (𝜑 → 7 < 𝐵) |
| 36 | 24, 26, 23, 28, 35 | lttrd 11313 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐵) |
| 37 | 2, 4, 23, 36, 12 | relogbcld 41955 | . . . . 5 ⊢ (𝜑 → (2 logb 𝐵) ∈ ℝ) |
| 38 | 37 | flcld 13738 | . . . 4 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ) |
| 39 | 38 | zred 12616 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ) |
| 40 | 16, 8 | readdcld 11181 | . . . 4 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ) |
| 41 | 16 | ltp1d 12091 | . . . . . 6 ⊢ (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1)) |
| 42 | 26, 16, 40, 30, 41 | lttrd 11313 | . . . . 5 ⊢ (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1)) |
| 43 | 24, 26, 40, 28, 42 | lttrd 11313 | . . . 4 ⊢ (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1)) |
| 44 | 2, 4, 40, 43, 12 | relogbcld 41955 | . . 3 ⊢ (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ) |
| 45 | flle 13739 | . . . 4 ⊢ ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) | |
| 46 | 37, 45 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) |
| 47 | ceilm1lt 13788 | . . . . . . 7 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) | |
| 48 | 16, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) |
| 49 | 19, 8, 16 | ltsubaddd 11752 | . . . . . 6 ⊢ (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))) |
| 50 | 48, 49 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)) |
| 51 | 21, 50 | eqbrtrd 5124 | . . . 4 ⊢ (𝜑 → 𝐵 < (((2 logb 𝑁)↑5) + 1)) |
| 52 | 2z 12543 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 53 | 52 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 54 | 53 | uzidd 12787 | . . . . 5 ⊢ (𝜑 → 2 ∈ (ℤ≥‘2)) |
| 55 | 23, 36 | elrpd 12970 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| 56 | 40, 43 | elrpd 12970 | . . . . 5 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) |
| 57 | logblt 26728 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) | |
| 58 | 54, 55, 56, 57 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) |
| 59 | 51, 58 | mpbid 232 | . . 3 ⊢ (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
| 60 | 39, 37, 44, 46, 59 | lelttrd 11310 | . 2 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
| 61 | 3re 12244 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
| 63 | 1lt3 12332 | . . . . 5 ⊢ 1 < 3 | |
| 64 | 63 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 < 3) |
| 65 | 8, 62, 6, 64, 29 | ltletrd 11312 | . . 3 ⊢ (𝜑 → 1 < 𝑁) |
| 66 | 6, 65, 39, 44 | cxpltd 26662 | . 2 ⊢ (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))) |
| 67 | 60, 66 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11045 0cc0 11046 1c1 11047 + caddc 11049 < clt 11186 ≤ cle 11187 − cmin 11383 ℕcn 12164 2c2 12219 3c3 12220 5c5 12222 7c7 12224 ℕ0cn0 12420 ℤcz 12507 ℤ≥cuz 12771 ℝ+crp 12929 ⌊cfl 13730 ⌈cceil 13731 ↑cexp 14004 ↑𝑐ccxp 26498 logb clogb 26708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ioc 13289 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-ceil 13733 df-mod 13810 df-seq 13945 df-exp 14005 df-fac 14217 df-bc 14246 df-hash 14274 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15630 df-ef 16010 df-sin 16012 df-cos 16013 df-pi 16015 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19232 df-cmn 19697 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-tms 24244 df-cncf 24805 df-limc 25801 df-dv 25802 df-log 26499 df-cxp 26500 df-logb 26709 |
| This theorem is referenced by: aks4d1p1p2 42052 |
| Copyright terms: Public domain | W3C validator |