Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p3 Structured version   Visualization version   GIF version

Theorem aks4d1p1p3 40077
Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p3.2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p3.3 (𝜑 → 3 ≤ 𝑁)
Assertion
Ref Expression
aks4d1p1p3 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))

Proof of Theorem aks4d1p1p3
StepHypRef Expression
1 2re 12047 . . . . . . 7 2 ∈ ℝ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
3 2pos 12076 . . . . . . 7 0 < 2
43a1i 11 . . . . . 6 (𝜑 → 0 < 2)
5 aks4d1p1p3.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
65nnred 11988 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
75nngt0d 12022 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
8 1red 10976 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
9 1lt2 12144 . . . . . . . . . . . . . 14 1 < 2
109a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
118, 10ltned 11111 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
1211necomd 2999 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
132, 4, 6, 7, 12relogbcld 39981 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12253 . . . . . . . . . . 11 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . 10 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 13881 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13562 . . . . . . . . 9 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12426 . . . . . . 7 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p3.2 . . . . . . . . 9 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . 8 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2823 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 256 . . . . . 6 (𝜑𝐵 ∈ ℝ)
24 0red 10978 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
25 7re 12066 . . . . . . . 8 7 ∈ ℝ
2625a1i 11 . . . . . . 7 (𝜑 → 7 ∈ ℝ)
27 7pos 12084 . . . . . . . 8 0 < 7
2827a1i 11 . . . . . . 7 (𝜑 → 0 < 7)
29 aks4d1p1p3.3 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
306, 293lexlogpow5ineq3 40065 . . . . . . . . 9 (𝜑 → 7 < ((2 logb 𝑁)↑5))
31 ceilge 13565 . . . . . . . . . 10 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3216, 31syl 17 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3326, 16, 19, 30, 32ltletrd 11135 . . . . . . . 8 (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5)))
3421eqcomd 2744 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
3533, 34breqtrd 5100 . . . . . . 7 (𝜑 → 7 < 𝐵)
3624, 26, 23, 28, 35lttrd 11136 . . . . . 6 (𝜑 → 0 < 𝐵)
372, 4, 23, 36, 12relogbcld 39981 . . . . 5 (𝜑 → (2 logb 𝐵) ∈ ℝ)
3837flcld 13518 . . . 4 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
3938zred 12426 . . 3 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
4016, 8readdcld 11004 . . . 4 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
4116ltp1d 11905 . . . . . 6 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
4226, 16, 40, 30, 41lttrd 11136 . . . . 5 (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1))
4324, 26, 40, 28, 42lttrd 11136 . . . 4 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
442, 4, 40, 43, 12relogbcld 39981 . . 3 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
45 flle 13519 . . . 4 ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵))
4637, 45syl 17 . . 3 (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵))
47 ceilm1lt 13568 . . . . . . 7 (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5))
4816, 47syl 17 . . . . . 6 (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5))
4919, 8, 16ltsubaddd 11571 . . . . . 6 (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)))
5048, 49mpbid 231 . . . . 5 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))
5121, 50eqbrtrd 5096 . . . 4 (𝜑𝐵 < (((2 logb 𝑁)↑5) + 1))
52 2z 12352 . . . . . . 7 2 ∈ ℤ
5352a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
5453uzidd 12598 . . . . 5 (𝜑 → 2 ∈ (ℤ‘2))
5523, 36elrpd 12769 . . . . 5 (𝜑𝐵 ∈ ℝ+)
5640, 43elrpd 12769 . . . . 5 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+)
57 logblt 25934 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))))
5854, 55, 56, 57syl3anc 1370 . . . 4 (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))))
5951, 58mpbid 231 . . 3 (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))
6039, 37, 44, 46, 59lelttrd 11133 . 2 (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)))
61 3re 12053 . . . . 5 3 ∈ ℝ
6261a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
63 1lt3 12146 . . . . 5 1 < 3
6463a1i 11 . . . 4 (𝜑 → 1 < 3)
658, 62, 6, 64, 29ltletrd 11135 . . 3 (𝜑 → 1 < 𝑁)
666, 65, 39, 44cxpltd 25874 . 2 (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))))
6760, 66mpbid 231 1 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  3c3 12029  5c5 12031  7c7 12033  0cn0 12233  cz 12319  cuz 12582  +crp 12730  cfl 13510  cceil 13511  cexp 13782  𝑐ccxp 25711   logb clogb 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-logb 25915
This theorem is referenced by:  aks4d1p1p2  40078
  Copyright terms: Public domain W3C validator