Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p3 Structured version   Visualization version   GIF version

Theorem aks4d1p1p3 42051
Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p3.2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p3.3 (𝜑 → 3 ≤ 𝑁)
Assertion
Ref Expression
aks4d1p1p3 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))

Proof of Theorem aks4d1p1p3
StepHypRef Expression
1 2re 12238 . . . . . . 7 2 ∈ ℝ
21a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
3 2pos 12267 . . . . . . 7 0 < 2
43a1i 11 . . . . . 6 (𝜑 → 0 < 2)
5 aks4d1p1p3.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
65nnred 12179 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
75nngt0d 12213 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
8 1red 11153 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
9 1lt2 12330 . . . . . . . . . . . . . 14 1 < 2
109a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
118, 10ltned 11288 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
1211necomd 2980 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
132, 4, 6, 7, 12relogbcld 41955 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12440 . . . . . . . . . . 11 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . 10 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 14106 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13782 . . . . . . . . 9 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12616 . . . . . . 7 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p3.2 . . . . . . . . 9 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . 8 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2813 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 257 . . . . . 6 (𝜑𝐵 ∈ ℝ)
24 0red 11155 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
25 7re 12257 . . . . . . . 8 7 ∈ ℝ
2625a1i 11 . . . . . . 7 (𝜑 → 7 ∈ ℝ)
27 7pos 12275 . . . . . . . 8 0 < 7
2827a1i 11 . . . . . . 7 (𝜑 → 0 < 7)
29 aks4d1p1p3.3 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
306, 293lexlogpow5ineq3 42039 . . . . . . . . 9 (𝜑 → 7 < ((2 logb 𝑁)↑5))
31 ceilge 13785 . . . . . . . . . 10 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3216, 31syl 17 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3326, 16, 19, 30, 32ltletrd 11312 . . . . . . . 8 (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5)))
3421eqcomd 2735 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
3533, 34breqtrd 5128 . . . . . . 7 (𝜑 → 7 < 𝐵)
3624, 26, 23, 28, 35lttrd 11313 . . . . . 6 (𝜑 → 0 < 𝐵)
372, 4, 23, 36, 12relogbcld 41955 . . . . 5 (𝜑 → (2 logb 𝐵) ∈ ℝ)
3837flcld 13738 . . . 4 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
3938zred 12616 . . 3 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
4016, 8readdcld 11181 . . . 4 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
4116ltp1d 12091 . . . . . 6 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
4226, 16, 40, 30, 41lttrd 11313 . . . . 5 (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1))
4324, 26, 40, 28, 42lttrd 11313 . . . 4 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
442, 4, 40, 43, 12relogbcld 41955 . . 3 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
45 flle 13739 . . . 4 ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵))
4637, 45syl 17 . . 3 (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵))
47 ceilm1lt 13788 . . . . . . 7 (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5))
4816, 47syl 17 . . . . . 6 (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5))
4919, 8, 16ltsubaddd 11752 . . . . . 6 (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)))
5048, 49mpbid 232 . . . . 5 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))
5121, 50eqbrtrd 5124 . . . 4 (𝜑𝐵 < (((2 logb 𝑁)↑5) + 1))
52 2z 12543 . . . . . . 7 2 ∈ ℤ
5352a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
5453uzidd 12787 . . . . 5 (𝜑 → 2 ∈ (ℤ‘2))
5523, 36elrpd 12970 . . . . 5 (𝜑𝐵 ∈ ℝ+)
5640, 43elrpd 12970 . . . . 5 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+)
57 logblt 26728 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))))
5854, 55, 56, 57syl3anc 1373 . . . 4 (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))))
5951, 58mpbid 232 . . 3 (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))
6039, 37, 44, 46, 59lelttrd 11310 . 2 (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)))
61 3re 12244 . . . . 5 3 ∈ ℝ
6261a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
63 1lt3 12332 . . . . 5 1 < 3
6463a1i 11 . . . 4 (𝜑 → 1 < 3)
658, 62, 6, 64, 29ltletrd 11312 . . 3 (𝜑 → 1 < 𝑁)
666, 65, 39, 44cxpltd 26662 . 2 (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))))
6760, 66mpbid 232 1 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   < clt 11186  cle 11187  cmin 11383  cn 12164  2c2 12219  3c3 12220  5c5 12222  7c7 12224  0cn0 12420  cz 12507  cuz 12771  +crp 12929  cfl 13730  cceil 13731  cexp 14004  𝑐ccxp 26498   logb clogb 26708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-ceil 13733  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-limc 25801  df-dv 25802  df-log 26499  df-cxp 26500  df-logb 26709
This theorem is referenced by:  aks4d1p1p2  42052
  Copyright terms: Public domain W3C validator