| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p1p3 | Structured version Visualization version GIF version | ||
| Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| aks4d1p1p3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks4d1p1p3.2 | ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) |
| aks4d1p1p3.3 | ⊢ (𝜑 → 3 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| aks4d1p1p3 | ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12260 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | 2pos 12289 | . . . . . . 7 ⊢ 0 < 2 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 2) |
| 5 | aks4d1p1p3.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnred 12201 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 5 | nngt0d 12235 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 < 𝑁) |
| 8 | 1red 11175 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 9 | 1lt2 12352 | . . . . . . . . . . . . . 14 ⊢ 1 < 2 | |
| 10 | 9 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 < 2) |
| 11 | 8, 10 | ltned 11310 | . . . . . . . . . . . 12 ⊢ (𝜑 → 1 ≠ 2) |
| 12 | 11 | necomd 2980 | . . . . . . . . . . 11 ⊢ (𝜑 → 2 ≠ 1) |
| 13 | 2, 4, 6, 7, 12 | relogbcld 41961 | . . . . . . . . . 10 ⊢ (𝜑 → (2 logb 𝑁) ∈ ℝ) |
| 14 | 5nn0 12462 | . . . . . . . . . . 11 ⊢ 5 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 5 ∈ ℕ0) |
| 16 | 13, 15 | reexpcld 14128 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ) |
| 17 | ceilcl 13804 | . . . . . . . . 9 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
| 19 | 18 | zred 12638 | . . . . . . 7 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ) |
| 20 | aks4d1p1p3.2 | . . . . . . . . 9 ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
| 22 | 21 | eleq1d 2813 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)) |
| 23 | 19, 22 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 24 | 0red 11177 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 25 | 7re 12279 | . . . . . . . 8 ⊢ 7 ∈ ℝ | |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 7 ∈ ℝ) |
| 27 | 7pos 12297 | . . . . . . . 8 ⊢ 0 < 7 | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 7) |
| 29 | aks4d1p1p3.3 | . . . . . . . . . 10 ⊢ (𝜑 → 3 ≤ 𝑁) | |
| 30 | 6, 29 | 3lexlogpow5ineq3 42045 | . . . . . . . . 9 ⊢ (𝜑 → 7 < ((2 logb 𝑁)↑5)) |
| 31 | ceilge 13807 | . . . . . . . . . 10 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) | |
| 32 | 16, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) |
| 33 | 26, 16, 19, 30, 32 | ltletrd 11334 | . . . . . . . 8 ⊢ (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5))) |
| 34 | 21 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵) |
| 35 | 33, 34 | breqtrd 5133 | . . . . . . 7 ⊢ (𝜑 → 7 < 𝐵) |
| 36 | 24, 26, 23, 28, 35 | lttrd 11335 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐵) |
| 37 | 2, 4, 23, 36, 12 | relogbcld 41961 | . . . . 5 ⊢ (𝜑 → (2 logb 𝐵) ∈ ℝ) |
| 38 | 37 | flcld 13760 | . . . 4 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ) |
| 39 | 38 | zred 12638 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ) |
| 40 | 16, 8 | readdcld 11203 | . . . 4 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ) |
| 41 | 16 | ltp1d 12113 | . . . . . 6 ⊢ (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1)) |
| 42 | 26, 16, 40, 30, 41 | lttrd 11335 | . . . . 5 ⊢ (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1)) |
| 43 | 24, 26, 40, 28, 42 | lttrd 11335 | . . . 4 ⊢ (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1)) |
| 44 | 2, 4, 40, 43, 12 | relogbcld 41961 | . . 3 ⊢ (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ) |
| 45 | flle 13761 | . . . 4 ⊢ ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) | |
| 46 | 37, 45 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) |
| 47 | ceilm1lt 13810 | . . . . . . 7 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) | |
| 48 | 16, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) |
| 49 | 19, 8, 16 | ltsubaddd 11774 | . . . . . 6 ⊢ (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))) |
| 50 | 48, 49 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)) |
| 51 | 21, 50 | eqbrtrd 5129 | . . . 4 ⊢ (𝜑 → 𝐵 < (((2 logb 𝑁)↑5) + 1)) |
| 52 | 2z 12565 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 53 | 52 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 54 | 53 | uzidd 12809 | . . . . 5 ⊢ (𝜑 → 2 ∈ (ℤ≥‘2)) |
| 55 | 23, 36 | elrpd 12992 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| 56 | 40, 43 | elrpd 12992 | . . . . 5 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) |
| 57 | logblt 26694 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) | |
| 58 | 54, 55, 56, 57 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) |
| 59 | 51, 58 | mpbid 232 | . . 3 ⊢ (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
| 60 | 39, 37, 44, 46, 59 | lelttrd 11332 | . 2 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
| 61 | 3re 12266 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
| 63 | 1lt3 12354 | . . . . 5 ⊢ 1 < 3 | |
| 64 | 63 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 < 3) |
| 65 | 8, 62, 6, 64, 29 | ltletrd 11334 | . . 3 ⊢ (𝜑 → 1 < 𝑁) |
| 66 | 6, 65, 39, 44 | cxpltd 26628 | . 2 ⊢ (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))) |
| 67 | 60, 66 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 ℕcn 12186 2c2 12241 3c3 12242 5c5 12244 7c7 12246 ℕ0cn0 12442 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 ⌊cfl 13752 ⌈cceil 13753 ↑cexp 14026 ↑𝑐ccxp 26464 logb clogb 26674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-ceil 13755 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-cxp 26466 df-logb 26675 |
| This theorem is referenced by: aks4d1p1p2 42058 |
| Copyright terms: Public domain | W3C validator |