Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p1p3 | Structured version Visualization version GIF version |
Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024.) |
Ref | Expression |
---|---|
aks4d1p1p3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aks4d1p1p3.2 | ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) |
aks4d1p1p3.3 | ⊢ (𝜑 → 3 ≤ 𝑁) |
Ref | Expression |
---|---|
aks4d1p1p3 | ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11977 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℝ) |
3 | 2pos 12006 | . . . . . . 7 ⊢ 0 < 2 | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 2) |
5 | aks4d1p1p3.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 5 | nnred 11918 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
7 | 5 | nngt0d 11952 | . . . . . . . . . . 11 ⊢ (𝜑 → 0 < 𝑁) |
8 | 1red 10907 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 ∈ ℝ) | |
9 | 1lt2 12074 | . . . . . . . . . . . . . 14 ⊢ 1 < 2 | |
10 | 9 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 1 < 2) |
11 | 8, 10 | ltned 11041 | . . . . . . . . . . . 12 ⊢ (𝜑 → 1 ≠ 2) |
12 | 11 | necomd 2998 | . . . . . . . . . . 11 ⊢ (𝜑 → 2 ≠ 1) |
13 | 2, 4, 6, 7, 12 | relogbcld 39908 | . . . . . . . . . 10 ⊢ (𝜑 → (2 logb 𝑁) ∈ ℝ) |
14 | 5nn0 12183 | . . . . . . . . . . 11 ⊢ 5 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 5 ∈ ℕ0) |
16 | 13, 15 | reexpcld 13809 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ) |
17 | ceilcl 13490 | . . . . . . . . 9 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) | |
18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
19 | 18 | zred 12355 | . . . . . . 7 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ) |
20 | aks4d1p1p3.2 | . . . . . . . . 9 ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
22 | 21 | eleq1d 2823 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)) |
23 | 19, 22 | mpbird 256 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
24 | 0red 10909 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
25 | 7re 11996 | . . . . . . . 8 ⊢ 7 ∈ ℝ | |
26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 7 ∈ ℝ) |
27 | 7pos 12014 | . . . . . . . 8 ⊢ 0 < 7 | |
28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 7) |
29 | aks4d1p1p3.3 | . . . . . . . . . 10 ⊢ (𝜑 → 3 ≤ 𝑁) | |
30 | 6, 29 | 3lexlogpow5ineq3 39993 | . . . . . . . . 9 ⊢ (𝜑 → 7 < ((2 logb 𝑁)↑5)) |
31 | ceilge 13493 | . . . . . . . . . 10 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) | |
32 | 16, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5))) |
33 | 26, 16, 19, 30, 32 | ltletrd 11065 | . . . . . . . 8 ⊢ (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5))) |
34 | 21 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵) |
35 | 33, 34 | breqtrd 5096 | . . . . . . 7 ⊢ (𝜑 → 7 < 𝐵) |
36 | 24, 26, 23, 28, 35 | lttrd 11066 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐵) |
37 | 2, 4, 23, 36, 12 | relogbcld 39908 | . . . . 5 ⊢ (𝜑 → (2 logb 𝐵) ∈ ℝ) |
38 | 37 | flcld 13446 | . . . 4 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ) |
39 | 38 | zred 12355 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ) |
40 | 16, 8 | readdcld 10935 | . . . 4 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ) |
41 | 16 | ltp1d 11835 | . . . . . 6 ⊢ (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1)) |
42 | 26, 16, 40, 30, 41 | lttrd 11066 | . . . . 5 ⊢ (𝜑 → 7 < (((2 logb 𝑁)↑5) + 1)) |
43 | 24, 26, 40, 28, 42 | lttrd 11066 | . . . 4 ⊢ (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1)) |
44 | 2, 4, 40, 43, 12 | relogbcld 39908 | . . 3 ⊢ (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ) |
45 | flle 13447 | . . . 4 ⊢ ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) | |
46 | 37, 45 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) ≤ (2 logb 𝐵)) |
47 | ceilm1lt 13496 | . . . . . . 7 ⊢ (((2 logb 𝑁)↑5) ∈ ℝ → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) | |
48 | 16, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5)) |
49 | 19, 8, 16 | ltsubaddd 11501 | . . . . . 6 ⊢ (𝜑 → (((⌈‘((2 logb 𝑁)↑5)) − 1) < ((2 logb 𝑁)↑5) ↔ (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1))) |
50 | 48, 49 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (⌈‘((2 logb 𝑁)↑5)) < (((2 logb 𝑁)↑5) + 1)) |
51 | 21, 50 | eqbrtrd 5092 | . . . 4 ⊢ (𝜑 → 𝐵 < (((2 logb 𝑁)↑5) + 1)) |
52 | 2z 12282 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
53 | 52 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
54 | 53 | uzidd 12527 | . . . . 5 ⊢ (𝜑 → 2 ∈ (ℤ≥‘2)) |
55 | 23, 36 | elrpd 12698 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
56 | 40, 43 | elrpd 12698 | . . . . 5 ⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) |
57 | logblt 25839 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℝ+ ∧ (((2 logb 𝑁)↑5) + 1) ∈ ℝ+) → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) | |
58 | 54, 55, 56, 57 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐵 < (((2 logb 𝑁)↑5) + 1) ↔ (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1)))) |
59 | 51, 58 | mpbid 231 | . . 3 ⊢ (𝜑 → (2 logb 𝐵) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
60 | 39, 37, 44, 46, 59 | lelttrd 11063 | . 2 ⊢ (𝜑 → (⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1))) |
61 | 3re 11983 | . . . . 5 ⊢ 3 ∈ ℝ | |
62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
63 | 1lt3 12076 | . . . . 5 ⊢ 1 < 3 | |
64 | 63 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 < 3) |
65 | 8, 62, 6, 64, 29 | ltletrd 11065 | . . 3 ⊢ (𝜑 → 1 < 𝑁) |
66 | 6, 65, 39, 44 | cxpltd 25779 | . 2 ⊢ (𝜑 → ((⌊‘(2 logb 𝐵)) < (2 logb (((2 logb 𝑁)↑5) + 1)) ↔ (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))) |
67 | 60, 66 | mpbid 231 | 1 ⊢ (𝜑 → (𝑁↑𝑐(⌊‘(2 logb 𝐵))) < (𝑁↑𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 2c2 11958 3c3 11959 5c5 11961 7c7 11963 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 ⌊cfl 13438 ⌈cceil 13439 ↑cexp 13710 ↑𝑐ccxp 25616 logb clogb 25819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-ceil 13441 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-logb 25820 |
This theorem is referenced by: aks4d1p1p2 40006 |
Copyright terms: Public domain | W3C validator |