Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p2 Structured version   Visualization version   GIF version

Theorem aks4d1p1p2 42162
Description: Rewrite 𝐴 in more suitable form. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p2.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p2.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p2.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p2.4 (𝜑 → 3 ≤ 𝑁)
Assertion
Ref Expression
aks4d1p1p2 (𝜑𝐴 < (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p1p2
StepHypRef Expression
1 aks4d1p1p2.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
21nnred 12140 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
3 2re 12199 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
5 2pos 12228 . . . . . . . . . . . 12 0 < 2
65a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
71nngt0d 12174 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
8 1red 11113 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
9 1lt2 12291 . . . . . . . . . . . . . . . . . . 19 1 < 2
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
118, 10ltned 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
1211necomd 2983 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
134, 6, 2, 7, 12relogbcld 42065 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12401 . . . . . . . . . . . . . . . 16 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 14070 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13746 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12577 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p2.3 . . . . . . . . . . . . . 14 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2816 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 257 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
24 0red 11115 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
2515nn0zd 12494 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℤ)
26 3re 12205 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2726a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℝ)
28 1lt3 12293 . . . . . . . . . . . . . . . . 17 1 < 3
2928a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 3)
30 aks4d1p1p2.4 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑁)
318, 27, 2, 29, 30ltletrd 11273 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 𝑁)
322, 7elrpd 12931 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ+)
33 2rp 12895 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
3433, 9pm3.2i 470 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ+ ∧ 1 < 2)
3534a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2 ∈ ℝ+ ∧ 1 < 2))
36 logbgt0b 26730 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)) → (0 < (2 logb 𝑁) ↔ 1 < 𝑁))
3732, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (0 < (2 logb 𝑁) ↔ 1 < 𝑁))
3831, 37mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → 0 < (2 logb 𝑁))
39 expgt0 14002 . . . . . . . . . . . . . 14 (((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)) → 0 < ((2 logb 𝑁)↑5))
4013, 25, 38, 39syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 𝑁)↑5))
41 ceilge 13749 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4216, 41syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4324, 16, 19, 40, 42ltletrd 11273 . . . . . . . . . . . 12 (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5)))
4421breq2d 5101 . . . . . . . . . . . 12 (𝜑 → (0 < 𝐵 ↔ 0 < (⌈‘((2 logb 𝑁)↑5))))
4543, 44mpbird 257 . . . . . . . . . . 11 (𝜑 → 0 < 𝐵)
464, 6, 23, 45, 12relogbcld 42065 . . . . . . . . . 10 (𝜑 → (2 logb 𝐵) ∈ ℝ)
4746flcld 13702 . . . . . . . . 9 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
48 7re 12218 . . . . . . . . . . . . . . . 16 7 ∈ ℝ
4948a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 7 ∈ ℝ)
50 1lt7 12311 . . . . . . . . . . . . . . . 16 1 < 7
5150a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 7)
522, 303lexlogpow5ineq3 42149 . . . . . . . . . . . . . . 15 (𝜑 → 7 < ((2 logb 𝑁)↑5))
538, 49, 16, 51, 52lttrd 11274 . . . . . . . . . . . . . 14 (𝜑 → 1 < ((2 logb 𝑁)↑5))
548, 16, 19, 53, 42ltletrd 11273 . . . . . . . . . . . . 13 (𝜑 → 1 < (⌈‘((2 logb 𝑁)↑5)))
5521breq2d 5101 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝐵 ↔ 1 < (⌈‘((2 logb 𝑁)↑5))))
5654, 55mpbird 257 . . . . . . . . . . . 12 (𝜑 → 1 < 𝐵)
5723, 45elrpd 12931 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
58 logbgt0b 26730 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)) → (0 < (2 logb 𝐵) ↔ 1 < 𝐵))
5957, 35, 58syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 < (2 logb 𝐵) ↔ 1 < 𝐵))
6056, 59mpbird 257 . . . . . . . . . . 11 (𝜑 → 0 < (2 logb 𝐵))
6124, 46, 60ltled 11261 . . . . . . . . . 10 (𝜑 → 0 ≤ (2 logb 𝐵))
62 0zd 12480 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
63 flge 13709 . . . . . . . . . . 11 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
6446, 62, 63syl2anc 584 . . . . . . . . . 10 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
6561, 64mpbid 232 . . . . . . . . 9 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
6647, 65jca 511 . . . . . . . 8 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
67 elnn0z 12481 . . . . . . . 8 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
6866, 67sylibr 234 . . . . . . 7 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
692, 68reexpcld 14070 . . . . . 6 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℝ)
70 fzfid 13880 . . . . . . 7 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
712adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
72 elfznn 13453 . . . . . . . . . . 11 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
74 nnnn0 12388 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
7573, 74syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
7671, 75reexpcld 14070 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
77 1red 11113 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
7876, 77resubcld 11545 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℝ)
7970, 78fprodrecl 15860 . . . . . 6 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℝ)
8069, 79remulcld 11142 . . . . 5 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ)
81 aks4d1p1p2.2 . . . . . . 7 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
8281a1i 11 . . . . . 6 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
8382eleq1d 2816 . . . . 5 (𝜑 → (𝐴 ∈ ℝ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ))
8480, 83mpbird 257 . . . 4 (𝜑𝐴 ∈ ℝ)
851nnnn0d 12442 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
8685nn0ge0d 12445 . . . . 5 (𝜑 → 0 ≤ 𝑁)
8716, 8readdcld 11141 . . . . . . 7 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
8816ltp1d 12052 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
8924, 16, 87, 40, 88lttrd 11274 . . . . . . 7 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
904, 6, 87, 89, 12relogbcld 42065 . . . . . 6 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
9113resqcld 14032 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
9291flcld 13702 . . . . . . . . . . 11 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ∈ ℤ)
9392zred 12577 . . . . . . . . . . . 12 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ∈ ℝ)
94 0lt1 11639 . . . . . . . . . . . . 13 0 < 1
9594a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
964, 6, 4, 6, 12relogbcld 42065 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 2) ∈ ℝ)
9796resqcld 14032 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 2)↑2) ∈ ℝ)
98 2nn0 12398 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
9998a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℕ0)
1008leidd 11683 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 1)
1014recnd 11140 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
10224, 6gtned 11248 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
103 logbid1 26705 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
104101, 102, 12, 103syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 2) = 1)
105104eqcomd 2737 . . . . . . . . . . . . . . 15 (𝜑 → 1 = (2 logb 2))
106100, 105breqtrd 5115 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (2 logb 2))
10796, 99, 106expge1d 14072 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ ((2 logb 2)↑2))
108105eqcomd 2737 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) = 1)
109108oveq1d 7361 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 2)↑2) = (1↑2))
11099nn0zd 12494 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℤ)
111 1exp 13998 . . . . . . . . . . . . . . . . 17 (2 ∈ ℤ → (1↑2) = 1)
112110, 111syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1↑2) = 1)
113109, 112eqtrd 2766 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 2)↑2) = 1)
1144leidd 11683 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≤ 2)
115 1nn0 12397 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
1163, 115nn0addge1i 12429 . . . . . . . . . . . . . . . . . . . . 21 2 ≤ (2 + 1)
117 2p1e3 12262 . . . . . . . . . . . . . . . . . . . . 21 (2 + 1) = 3
118116, 117breqtri 5114 . . . . . . . . . . . . . . . . . . . 20 2 ≤ 3
119118a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ≤ 3)
1204, 27, 2, 119, 30letrd 11270 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≤ 𝑁)
121110, 114, 4, 6, 2, 7, 120logblebd 42068 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) ≤ (2 logb 𝑁))
1228, 96, 13, 106, 121letrd 11270 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ (2 logb 𝑁))
12313, 99, 122expge1d 14072 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ ((2 logb 𝑁)↑2))
124113, 123eqbrtrd 5111 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 2)↑2) ≤ ((2 logb 𝑁)↑2))
125 1z 12502 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
126 zsqcl 14036 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℤ → (1↑2) ∈ ℤ)
127125, 126ax-mp 5 . . . . . . . . . . . . . . . . . 18 (1↑2) ∈ ℤ
128127a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (1↑2) ∈ ℤ)
129109eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 logb 2)↑2) ∈ ℤ ↔ (1↑2) ∈ ℤ))
130128, 129mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 2)↑2) ∈ ℤ)
13191, 130jca 511 . . . . . . . . . . . . . . 15 (𝜑 → (((2 logb 𝑁)↑2) ∈ ℝ ∧ ((2 logb 2)↑2) ∈ ℤ))
132 flge 13709 . . . . . . . . . . . . . . 15 ((((2 logb 𝑁)↑2) ∈ ℝ ∧ ((2 logb 2)↑2) ∈ ℤ) → (((2 logb 2)↑2) ≤ ((2 logb 𝑁)↑2) ↔ ((2 logb 2)↑2) ≤ (⌊‘((2 logb 𝑁)↑2))))
133131, 132syl 17 . . . . . . . . . . . . . 14 (𝜑 → (((2 logb 2)↑2) ≤ ((2 logb 𝑁)↑2) ↔ ((2 logb 2)↑2) ≤ (⌊‘((2 logb 𝑁)↑2))))
134124, 133mpbid 232 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 2)↑2) ≤ (⌊‘((2 logb 𝑁)↑2)))
1358, 97, 93, 107, 134letrd 11270 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (⌊‘((2 logb 𝑁)↑2)))
13624, 8, 93, 95, 135ltletrd 11273 . . . . . . . . . . 11 (𝜑 → 0 < (⌊‘((2 logb 𝑁)↑2)))
13792, 136jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((2 logb 𝑁)↑2)) ∈ ℤ ∧ 0 < (⌊‘((2 logb 𝑁)↑2))))
138 elnnz 12478 . . . . . . . . . . . 12 ((⌊‘((2 logb 𝑁)↑2)) ∈ ℕ ↔ ((⌊‘((2 logb 𝑁)↑2)) ∈ ℤ ∧ 0 < (⌊‘((2 logb 𝑁)↑2))))
139138bicomi 224 . . . . . . . . . . 11 (((⌊‘((2 logb 𝑁)↑2)) ∈ ℤ ∧ 0 < (⌊‘((2 logb 𝑁)↑2))) ↔ (⌊‘((2 logb 𝑁)↑2)) ∈ ℕ)
140139a1i 11 . . . . . . . . . 10 (𝜑 → (((⌊‘((2 logb 𝑁)↑2)) ∈ ℤ ∧ 0 < (⌊‘((2 logb 𝑁)↑2))) ↔ (⌊‘((2 logb 𝑁)↑2)) ∈ ℕ))
141137, 140mpbid 232 . . . . . . . . 9 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ∈ ℕ)
142141nnnn0d 12442 . . . . . . . 8 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ∈ ℕ0)
143 arisum 15767 . . . . . . . 8 ((⌊‘((2 logb 𝑁)↑2)) ∈ ℕ0 → Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘 = ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))
144142, 143syl 17 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘 = ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))
14573nnred 12140 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℝ)
14670, 145fsumrecl 15641 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘 ∈ ℝ)
147144, 146eqeltrrd 2832 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2) ∈ ℝ)
14890, 147readdcld 11141 . . . . 5 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2)) ∈ ℝ)
1492, 86, 148recxpcld 26659 . . . 4 (𝜑 → (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))) ∈ ℝ)
150 4nn0 12400 . . . . . . . . . 10 4 ∈ ℕ0
151150a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℕ0)
15213, 151reexpcld 14070 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℝ)
153152, 91readdcld 11141 . . . . . . 7 (𝜑 → (((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) ∈ ℝ)
154153rehalfcld 12368 . . . . . 6 (𝜑 → ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2) ∈ ℝ)
15590, 154readdcld 11141 . . . . 5 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2)) ∈ ℝ)
1562, 86, 155recxpcld 26659 . . . 4 (𝜑 → (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2))) ∈ ℝ)
157 reflcl 13700 . . . . . . . . . . 11 ((2 logb 𝐵) ∈ ℝ → (⌊‘(2 logb 𝐵)) ∈ ℝ)
15846, 157syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
1592, 86, 158recxpcld 26659 . . . . . . . . 9 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) ∈ ℝ)
16032, 146rpcxpcld 26669 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘) ∈ ℝ+)
16132, 141aks4d1p1p1 42155 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) = (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘))
162161eleq1d 2816 . . . . . . . . . . . 12 (𝜑 → (∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) ∈ ℝ+ ↔ (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘) ∈ ℝ+))
163160, 162mpbird 257 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) ∈ ℝ+)
164163rpregt0d 12940 . . . . . . . . . 10 (𝜑 → (∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) ∈ ℝ ∧ 0 < ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
165164simpld 494 . . . . . . . . 9 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) ∈ ℝ)
166159, 165remulcld 11142 . . . . . . . 8 (𝜑 → ((𝑁𝑐(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) ∈ ℝ)
1672, 86, 90recxpcld 26659 . . . . . . . . 9 (𝜑 → (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) ∈ ℝ)
168167, 165remulcld 11142 . . . . . . . 8 (𝜑 → ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) ∈ ℝ)
16970, 76fprodrecl 15860 . . . . . . . . . . . 12 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘) ∈ ℝ)
1702, 68, 86expge0d 14071 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁↑(⌊‘(2 logb 𝐵))))
171 nfv 1915 . . . . . . . . . . . . 13 𝑘𝜑
172 0red 11115 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 ∈ ℝ)
1731nnge1d 12173 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑁)
174173adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ≤ 𝑁)
17571, 75, 174expge1d 14072 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ≤ (𝑁𝑘))
17676recnd 11140 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℂ)
177176subid1d 11461 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 0) = (𝑁𝑘))
178177breq2d 5101 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 ≤ ((𝑁𝑘) − 0) ↔ 1 ≤ (𝑁𝑘)))
179175, 178mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ≤ ((𝑁𝑘) − 0))
18077, 76, 172, 179lesubd 11721 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 ≤ ((𝑁𝑘) − 1))
18176lem1d 12055 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ≤ (𝑁𝑘))
182171, 70, 78, 180, 76, 181fprodle 15903 . . . . . . . . . . . 12 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ≤ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘))
18379, 169, 69, 170, 182lemul2ad 12062 . . . . . . . . . . 11 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ≤ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘)))
18482breq1d 5099 . . . . . . . . . . 11 (𝜑 → (𝐴 ≤ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘)) ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ≤ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘))))
185183, 184mpbird 257 . . . . . . . . . 10 (𝜑𝐴 ≤ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘)))
18671recnd 11140 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℂ)
187 cxpexp 26604 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑐𝑘) = (𝑁𝑘))
188186, 75, 187syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑐𝑘) = (𝑁𝑘))
189188eqcomd 2737 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) = (𝑁𝑐𝑘))
190189prodeq2dv 15829 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘))
191190oveq2d 7362 . . . . . . . . . 10 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑘)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
192185, 191breqtrd 5115 . . . . . . . . 9 (𝜑𝐴 ≤ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
1932recnd 11140 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
194 cxpexp 26604 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ (⌊‘(2 logb 𝐵)) ∈ ℕ0) → (𝑁𝑐(⌊‘(2 logb 𝐵))) = (𝑁↑(⌊‘(2 logb 𝐵))))
195193, 68, 194syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) = (𝑁↑(⌊‘(2 logb 𝐵))))
196195oveq1d 7361 . . . . . . . . . 10 (𝜑 → ((𝑁𝑐(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
197196eqcomd 2737 . . . . . . . . 9 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) = ((𝑁𝑐(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
198192, 197breqtrd 5115 . . . . . . . 8 (𝜑𝐴 ≤ ((𝑁𝑐(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
199159, 167, 1643jca 1128 . . . . . . . . 9 (𝜑 → ((𝑁𝑐(⌊‘(2 logb 𝐵))) ∈ ℝ ∧ (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) ∈ ℝ ∧ (∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) ∈ ℝ ∧ 0 < ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘))))
2001, 20, 30aks4d1p1p3 42161 . . . . . . . . 9 (𝜑 → (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))))
201 ltmul1a 11970 . . . . . . . . 9 ((((𝑁𝑐(⌊‘(2 logb 𝐵))) ∈ ℝ ∧ (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) ∈ ℝ ∧ (∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘) ∈ ℝ ∧ 0 < ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘))) ∧ (𝑁𝑐(⌊‘(2 logb 𝐵))) < (𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1)))) → ((𝑁𝑐(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) < ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
202199, 200, 201syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑁𝑐(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) < ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
20384, 166, 168, 198, 202lelttrd 11271 . . . . . . 7 (𝜑𝐴 < ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)))
204161oveq2d 7362 . . . . . . 7 (𝜑 → ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))(𝑁𝑐𝑘)) = ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘)))
205203, 204breqtrd 5115 . . . . . 6 (𝜑𝐴 < ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘)))
206144oveq2d 7362 . . . . . . 7 (𝜑 → (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘) = (𝑁𝑐((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2)))
207206oveq2d 7362 . . . . . 6 (𝜑 → ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐Σ𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))𝑘)) = ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))))
208205, 207breqtrd 5115 . . . . 5 (𝜑𝐴 < ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))))
20924, 7gtned 11248 . . . . . . 7 (𝜑𝑁 ≠ 0)
21090recnd 11140 . . . . . . 7 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℂ)
211141nncnd 12141 . . . . . . . . . 10 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ∈ ℂ)
212211sqcld 14051 . . . . . . . . 9 (𝜑 → ((⌊‘((2 logb 𝑁)↑2))↑2) ∈ ℂ)
213212, 211addcld 11131 . . . . . . . 8 (𝜑 → (((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) ∈ ℂ)
214213halfcld 12366 . . . . . . 7 (𝜑 → ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2) ∈ ℂ)
215193, 209, 210, 214cxpaddd 26653 . . . . . 6 (𝜑 → (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))) = ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))))
216215eqcomd 2737 . . . . 5 (𝜑 → ((𝑁𝑐(2 logb (((2 logb 𝑁)↑5) + 1))) · (𝑁𝑐((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))) = (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))))
217208, 216breqtrd 5115 . . . 4 (𝜑𝐴 < (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))))
218 reflcl 13700 . . . . . . . . . 10 (((2 logb 𝑁)↑2) ∈ ℝ → (⌊‘((2 logb 𝑁)↑2)) ∈ ℝ)
21991, 218syl 17 . . . . . . . . 9 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ∈ ℝ)
220219resqcld 14032 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁)↑2))↑2) ∈ ℝ)
221220, 219readdcld 11141 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) ∈ ℝ)
22233a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
22391, 99reexpcld 14070 . . . . . . . . 9 (𝜑 → (((2 logb 𝑁)↑2)↑2) ∈ ℝ)
224 id 22 . . . . . . . . . 10 (𝜑𝜑)
225142nn0ge0d 12445 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((2 logb 𝑁)↑2)))
226 flle 13703 . . . . . . . . . . . 12 (((2 logb 𝑁)↑2) ∈ ℝ → (⌊‘((2 logb 𝑁)↑2)) ≤ ((2 logb 𝑁)↑2))
22791, 226syl 17 . . . . . . . . . . 11 (𝜑 → (⌊‘((2 logb 𝑁)↑2)) ≤ ((2 logb 𝑁)↑2))
228219, 91, 99, 225, 227leexp1ad 14083 . . . . . . . . . 10 (𝜑 → ((⌊‘((2 logb 𝑁)↑2))↑2) ≤ (((2 logb 𝑁)↑2)↑2))
229224, 228syl 17 . . . . . . . . 9 (𝜑 → ((⌊‘((2 logb 𝑁)↑2))↑2) ≤ (((2 logb 𝑁)↑2)↑2))
23013recnd 11140 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℂ)
231230, 99, 99expmuld 14056 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑(2 · 2)) = (((2 logb 𝑁)↑2)↑2))
232231eqcomd 2737 . . . . . . . . . . 11 (𝜑 → (((2 logb 𝑁)↑2)↑2) = ((2 logb 𝑁)↑(2 · 2)))
233 2t2e4 12284 . . . . . . . . . . . . 13 (2 · 2) = 4
234233oveq2i 7357 . . . . . . . . . . . 12 ((2 logb 𝑁)↑(2 · 2)) = ((2 logb 𝑁)↑4)
235234a1i 11 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑(2 · 2)) = ((2 logb 𝑁)↑4))
236232, 235eqtrd 2766 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑2)↑2) = ((2 logb 𝑁)↑4))
237223, 236eqled 11216 . . . . . . . . 9 (𝜑 → (((2 logb 𝑁)↑2)↑2) ≤ ((2 logb 𝑁)↑4))
238220, 223, 152, 229, 237letrd 11270 . . . . . . . 8 (𝜑 → ((⌊‘((2 logb 𝑁)↑2))↑2) ≤ ((2 logb 𝑁)↑4))
239220, 219, 152, 91, 238, 227le2addd 11736 . . . . . . 7 (𝜑 → (((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) ≤ (((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)))
240221, 153, 222, 239lediv1dd 12992 . . . . . 6 (𝜑 → ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2) ≤ ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2))
241147, 154, 90, 240leadd2dd 11732 . . . . 5 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2)) ≤ ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2)))
2422, 31, 148, 155cxpled 26656 . . . . 5 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2)) ≤ ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2)) ↔ (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))) ≤ (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2)))))
243241, 242mpbid 232 . . . 4 (𝜑 → (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((⌊‘((2 logb 𝑁)↑2))↑2) + (⌊‘((2 logb 𝑁)↑2))) / 2))) ≤ (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2))))
24484, 149, 156, 217, 243ltletrd 11273 . . 3 (𝜑𝐴 < (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2))))
245152recnd 11140 . . . . . 6 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℂ)
24691recnd 11140 . . . . . 6 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℂ)
247245, 246, 101, 102divdird 11935 . . . . 5 (𝜑 → ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2) = ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2)))
248247oveq2d 7362 . . . 4 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2)) = ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2))))
249248oveq2d 7362 . . 3 (𝜑 → (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) + ((2 logb 𝑁)↑2)) / 2))) = (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2)))))
250244, 249breqtrd 5115 . 2 (𝜑𝐴 < (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2)))))
251245, 101, 102divcld 11897 . . . . . 6 (𝜑 → (((2 logb 𝑁)↑4) / 2) ∈ ℂ)
252246, 101, 102divcld 11897 . . . . . 6 (𝜑 → (((2 logb 𝑁)↑2) / 2) ∈ ℂ)
253251, 252addcomd 11315 . . . . 5 (𝜑 → ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2)) = ((((2 logb 𝑁)↑2) / 2) + (((2 logb 𝑁)↑4) / 2)))
254253oveq2d 7362 . . . 4 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2))) = ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑2) / 2) + (((2 logb 𝑁)↑4) / 2))))
255210, 252, 251addassd 11134 . . . . 5 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑2) / 2) + (((2 logb 𝑁)↑4) / 2))))
256255eqcomd 2737 . . . 4 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑2) / 2) + (((2 logb 𝑁)↑4) / 2))) = (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)))
257254, 256eqtrd 2766 . . 3 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2))) = (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)))
258257oveq2d 7362 . 2 (𝜑 → (𝑁𝑐((2 logb (((2 logb 𝑁)↑5) + 1)) + ((((2 logb 𝑁)↑4) / 2) + (((2 logb 𝑁)↑2) / 2)))) = (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
259250, 258breqtrd 5115 1 (𝜑𝐴 < (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  7c7 12185  0cn0 12381  cz 12468  +crp 12890  ...cfz 13407  cfl 13694  cceil 13695  cexp 13968  Σcsu 15593  cprod 15810  𝑐ccxp 26491   logb clogb 26701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-ceil 13697  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-logb 26702
This theorem is referenced by:  aks4d1p1p4  42163
  Copyright terms: Public domain W3C validator