| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. 2
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶)) |
| 2 | | eqidd 2737 |
. 2
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶)) |
| 3 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑎 = 〈𝑥, 𝑦, 𝑓〉 → (𝑎 = 𝑏 ↔ 〈𝑥, 𝑦, 𝑓〉 = 𝑏)) |
| 4 | | eqeq2 2748 |
. . . . . 6
⊢ (𝑏 = 〈𝑥, 𝑦, 𝑔〉 → (〈𝑥, 𝑦, 𝑓〉 = 𝑏 ↔ 〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉)) |
| 5 | | eumo 2578 |
. . . . . . . 8
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶)) |
| 6 | 5 | ad2antrr 726 |
. . . . . . 7
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶)) |
| 7 | | moel 3386 |
. . . . . . 7
⊢
(∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏) |
| 8 | 6, 7 | sylib 218 |
. . . . . 6
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏) |
| 9 | | eqid 2736 |
. . . . . . . 8
⊢
(Arrow‘𝐶) =
(Arrow‘𝐶) |
| 10 | | eqid 2736 |
. . . . . . . 8
⊢
(Homa‘𝐶) = (Homa‘𝐶) |
| 11 | 9, 10 | homarw 18064 |
. . . . . . 7
⊢ (𝑥(Homa‘𝐶)𝑦) ⊆ (Arrow‘𝐶) |
| 12 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 13 | | euex 2577 |
. . . . . . . . . 10
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶)) |
| 14 | 9 | arwrcl 18062 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat) |
| 15 | 14 | exlimiv 1930 |
. . . . . . . . . 10
⊢
(∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat) |
| 16 | 13, 15 | syl 17 |
. . . . . . . . 9
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat) |
| 18 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 19 | | simplrl 776 |
. . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶)) |
| 20 | | simplrr 777 |
. . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶)) |
| 21 | | simprl 770 |
. . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 22 | 10, 12, 17, 18, 19, 20, 21 | elhomai2 18052 |
. . . . . . 7
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑓〉 ∈ (𝑥(Homa‘𝐶)𝑦)) |
| 23 | 11, 22 | sselid 3961 |
. . . . . 6
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑓〉 ∈ (Arrow‘𝐶)) |
| 24 | | simprr 772 |
. . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 25 | 10, 12, 17, 18, 19, 20, 24 | elhomai2 18052 |
. . . . . . 7
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑔〉 ∈ (𝑥(Homa‘𝐶)𝑦)) |
| 26 | 11, 25 | sselid 3961 |
. . . . . 6
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑔〉 ∈ (Arrow‘𝐶)) |
| 27 | 3, 4, 8, 23, 26 | rspc2dv 3621 |
. . . . 5
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉) |
| 28 | | vex 3468 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 29 | | vex 3468 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 30 | | vex 3468 |
. . . . . . 7
⊢ 𝑓 ∈ V |
| 31 | 28, 29, 30 | otth 5464 |
. . . . . 6
⊢
(〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉 ↔ (𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑓 = 𝑔)) |
| 32 | 31 | simp3bi 1147 |
. . . . 5
⊢
(〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉 → 𝑓 = 𝑔) |
| 33 | 27, 32 | syl 17 |
. . . 4
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔) |
| 34 | 33 | ralrimivva 3188 |
. . 3
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔) |
| 35 | | moel 3386 |
. . 3
⊢
(∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔) |
| 36 | 34, 35 | sylibr 234 |
. 2
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 37 | 1, 2, 36, 16 | isthincd 49289 |
1
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat) |