| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqidd 2737 | . 2
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶)) | 
| 2 |  | eqidd 2737 | . 2
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶)) | 
| 3 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑎 = 〈𝑥, 𝑦, 𝑓〉 → (𝑎 = 𝑏 ↔ 〈𝑥, 𝑦, 𝑓〉 = 𝑏)) | 
| 4 |  | eqeq2 2748 | . . . . . 6
⊢ (𝑏 = 〈𝑥, 𝑦, 𝑔〉 → (〈𝑥, 𝑦, 𝑓〉 = 𝑏 ↔ 〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉)) | 
| 5 |  | eumo 2577 | . . . . . . . 8
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶)) | 
| 6 | 5 | ad2antrr 726 | . . . . . . 7
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶)) | 
| 7 |  | moel 3401 | . . . . . . 7
⊢
(∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏) | 
| 8 | 6, 7 | sylib 218 | . . . . . 6
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏) | 
| 9 |  | eqid 2736 | . . . . . . . 8
⊢
(Arrow‘𝐶) =
(Arrow‘𝐶) | 
| 10 |  | eqid 2736 | . . . . . . . 8
⊢
(Homa‘𝐶) = (Homa‘𝐶) | 
| 11 | 9, 10 | homarw 18092 | . . . . . . 7
⊢ (𝑥(Homa‘𝐶)𝑦) ⊆ (Arrow‘𝐶) | 
| 12 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 13 |  | euex 2576 | . . . . . . . . . 10
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶)) | 
| 14 | 9 | arwrcl 18090 | . . . . . . . . . . 11
⊢ (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat) | 
| 15 | 14 | exlimiv 1929 | . . . . . . . . . 10
⊢
(∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat) | 
| 16 | 13, 15 | syl 17 | . . . . . . . . 9
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat) | 
| 17 | 16 | ad2antrr 726 | . . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat) | 
| 18 |  | eqid 2736 | . . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 19 |  | simplrl 776 | . . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶)) | 
| 20 |  | simplrr 777 | . . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶)) | 
| 21 |  | simprl 770 | . . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) | 
| 22 | 10, 12, 17, 18, 19, 20, 21 | elhomai2 18080 | . . . . . . 7
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑓〉 ∈ (𝑥(Homa‘𝐶)𝑦)) | 
| 23 | 11, 22 | sselid 3980 | . . . . . 6
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑓〉 ∈ (Arrow‘𝐶)) | 
| 24 |  | simprr 772 | . . . . . . . 8
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) | 
| 25 | 10, 12, 17, 18, 19, 20, 24 | elhomai2 18080 | . . . . . . 7
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑔〉 ∈ (𝑥(Homa‘𝐶)𝑦)) | 
| 26 | 11, 25 | sselid 3980 | . . . . . 6
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑔〉 ∈ (Arrow‘𝐶)) | 
| 27 | 3, 4, 8, 23, 26 | rspc2dv 3636 | . . . . 5
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉) | 
| 28 |  | vex 3483 | . . . . . . 7
⊢ 𝑥 ∈ V | 
| 29 |  | vex 3483 | . . . . . . 7
⊢ 𝑦 ∈ V | 
| 30 |  | vex 3483 | . . . . . . 7
⊢ 𝑓 ∈ V | 
| 31 | 28, 29, 30 | otth 5488 | . . . . . 6
⊢
(〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉 ↔ (𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑓 = 𝑔)) | 
| 32 | 31 | simp3bi 1147 | . . . . 5
⊢
(〈𝑥, 𝑦, 𝑓〉 = 〈𝑥, 𝑦, 𝑔〉 → 𝑓 = 𝑔) | 
| 33 | 27, 32 | syl 17 | . . . 4
⊢
(((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔) | 
| 34 | 33 | ralrimivva 3201 | . . 3
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔) | 
| 35 |  | moel 3401 | . . 3
⊢
(∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔) | 
| 36 | 34, 35 | sylibr 234 | . 2
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) | 
| 37 | 1, 2, 36, 16 | isthincd 49110 | 1
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat) |