Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweuthinc Structured version   Visualization version   GIF version

Theorem arweuthinc 49515
Description: If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweuthinc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweuthinc
Dummy variables 𝑏 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2730 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqeq1 2733 . . . . . 6 (𝑎 = ⟨𝑥, 𝑦, 𝑓⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = 𝑏))
4 eqeq2 2741 . . . . . 6 (𝑏 = ⟨𝑥, 𝑦, 𝑔⟩ → (⟨𝑥, 𝑦, 𝑓⟩ = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩))
5 eumo 2571 . . . . . . . 8 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
65ad2antrr 726 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
7 moel 3376 . . . . . . 7 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
86, 7sylib 218 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
9 eqid 2729 . . . . . . . 8 (Arrow‘𝐶) = (Arrow‘𝐶)
10 eqid 2729 . . . . . . . 8 (Homa𝐶) = (Homa𝐶)
119, 10homarw 18008 . . . . . . 7 (𝑥(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
12 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
13 euex 2570 . . . . . . . . . 10 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
149arwrcl 18006 . . . . . . . . . . 11 (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1930 . . . . . . . . . 10 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1613, 15syl 17 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1716ad2antrr 726 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat)
18 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
19 simplrl 776 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
20 simplrr 777 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
21 simprl 770 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
2210, 12, 17, 18, 19, 20, 21elhomai2 17996 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (𝑥(Homa𝐶)𝑦))
2311, 22sselid 3944 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (Arrow‘𝐶))
24 simprr 772 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
2510, 12, 17, 18, 19, 20, 24elhomai2 17996 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (𝑥(Homa𝐶)𝑦))
2611, 25sselid 3944 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (Arrow‘𝐶))
273, 4, 8, 23, 26rspc2dv 3603 . . . . 5 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩)
28 vex 3451 . . . . . . 7 𝑥 ∈ V
29 vex 3451 . . . . . . 7 𝑦 ∈ V
30 vex 3451 . . . . . . 7 𝑓 ∈ V
3128, 29, 30otth 5444 . . . . . 6 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑦𝑓 = 𝑔))
3231simp3bi 1147 . . . . 5 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ → 𝑓 = 𝑔)
3327, 32syl 17 . . . 4 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔)
3433ralrimivva 3180 . . 3 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
35 moel 3376 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
3634, 35sylibr 234 . 2 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
371, 2, 36, 16isthincd 49422 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wral 3044  cotp 4597  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Catccat 17625  Arrowcarw 17984  Homachoma 17985  ThinCatcthinc 49403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-homa 17988  df-arw 17989  df-thinc 49404
This theorem is referenced by:  arweutermc  49516
  Copyright terms: Public domain W3C validator