Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweuthinc Structured version   Visualization version   GIF version

Theorem arweuthinc 49381
Description: If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweuthinc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweuthinc
Dummy variables 𝑏 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2737 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqeq1 2740 . . . . . 6 (𝑎 = ⟨𝑥, 𝑦, 𝑓⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = 𝑏))
4 eqeq2 2748 . . . . . 6 (𝑏 = ⟨𝑥, 𝑦, 𝑔⟩ → (⟨𝑥, 𝑦, 𝑓⟩ = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩))
5 eumo 2578 . . . . . . . 8 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
65ad2antrr 726 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
7 moel 3386 . . . . . . 7 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
86, 7sylib 218 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
9 eqid 2736 . . . . . . . 8 (Arrow‘𝐶) = (Arrow‘𝐶)
10 eqid 2736 . . . . . . . 8 (Homa𝐶) = (Homa𝐶)
119, 10homarw 18064 . . . . . . 7 (𝑥(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
12 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
13 euex 2577 . . . . . . . . . 10 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
149arwrcl 18062 . . . . . . . . . . 11 (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1930 . . . . . . . . . 10 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1613, 15syl 17 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1716ad2antrr 726 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat)
18 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
19 simplrl 776 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
20 simplrr 777 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
21 simprl 770 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
2210, 12, 17, 18, 19, 20, 21elhomai2 18052 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (𝑥(Homa𝐶)𝑦))
2311, 22sselid 3961 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (Arrow‘𝐶))
24 simprr 772 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
2510, 12, 17, 18, 19, 20, 24elhomai2 18052 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (𝑥(Homa𝐶)𝑦))
2611, 25sselid 3961 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (Arrow‘𝐶))
273, 4, 8, 23, 26rspc2dv 3621 . . . . 5 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩)
28 vex 3468 . . . . . . 7 𝑥 ∈ V
29 vex 3468 . . . . . . 7 𝑦 ∈ V
30 vex 3468 . . . . . . 7 𝑓 ∈ V
3128, 29, 30otth 5464 . . . . . 6 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑦𝑓 = 𝑔))
3231simp3bi 1147 . . . . 5 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ → 𝑓 = 𝑔)
3327, 32syl 17 . . . 4 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔)
3433ralrimivva 3188 . . 3 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
35 moel 3386 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
3634, 35sylibr 234 . 2 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
371, 2, 36, 16isthincd 49289 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2538  ∃!weu 2568  wral 3052  cotp 4614  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  Catccat 17681  Arrowcarw 18040  Homachoma 18041  ThinCatcthinc 49270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-homa 18044  df-arw 18045  df-thinc 49271
This theorem is referenced by:  arweutermc  49382
  Copyright terms: Public domain W3C validator