Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweuthinc Structured version   Visualization version   GIF version

Theorem arweuthinc 49187
Description: If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweuthinc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweuthinc
Dummy variables 𝑏 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2737 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqeq1 2740 . . . . . 6 (𝑎 = ⟨𝑥, 𝑦, 𝑓⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = 𝑏))
4 eqeq2 2748 . . . . . 6 (𝑏 = ⟨𝑥, 𝑦, 𝑔⟩ → (⟨𝑥, 𝑦, 𝑓⟩ = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩))
5 eumo 2577 . . . . . . . 8 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
65ad2antrr 726 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
7 moel 3401 . . . . . . 7 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
86, 7sylib 218 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
9 eqid 2736 . . . . . . . 8 (Arrow‘𝐶) = (Arrow‘𝐶)
10 eqid 2736 . . . . . . . 8 (Homa𝐶) = (Homa𝐶)
119, 10homarw 18092 . . . . . . 7 (𝑥(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
12 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
13 euex 2576 . . . . . . . . . 10 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
149arwrcl 18090 . . . . . . . . . . 11 (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1929 . . . . . . . . . 10 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1613, 15syl 17 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1716ad2antrr 726 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat)
18 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
19 simplrl 776 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
20 simplrr 777 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
21 simprl 770 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
2210, 12, 17, 18, 19, 20, 21elhomai2 18080 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (𝑥(Homa𝐶)𝑦))
2311, 22sselid 3980 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (Arrow‘𝐶))
24 simprr 772 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
2510, 12, 17, 18, 19, 20, 24elhomai2 18080 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (𝑥(Homa𝐶)𝑦))
2611, 25sselid 3980 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (Arrow‘𝐶))
273, 4, 8, 23, 26rspc2dv 3636 . . . . 5 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩)
28 vex 3483 . . . . . . 7 𝑥 ∈ V
29 vex 3483 . . . . . . 7 𝑦 ∈ V
30 vex 3483 . . . . . . 7 𝑓 ∈ V
3128, 29, 30otth 5488 . . . . . 6 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑦𝑓 = 𝑔))
3231simp3bi 1147 . . . . 5 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ → 𝑓 = 𝑔)
3327, 32syl 17 . . . 4 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔)
3433ralrimivva 3201 . . 3 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
35 moel 3401 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
3634, 35sylibr 234 . 2 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
371, 2, 36, 16isthincd 49110 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  ∃*wmo 2537  ∃!weu 2567  wral 3060  cotp 4633  cfv 6560  (class class class)co 7432  Basecbs 17248  Hom chom 17309  Catccat 17708  Arrowcarw 18068  Homachoma 18069  ThinCatcthinc 49091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-homa 18072  df-arw 18073  df-thinc 49092
This theorem is referenced by:  arweutermc  49188
  Copyright terms: Public domain W3C validator