Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweuthinc Structured version   Visualization version   GIF version

Theorem arweuthinc 49513
Description: If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweuthinc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweuthinc
Dummy variables 𝑏 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2730 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqeq1 2733 . . . . . 6 (𝑎 = ⟨𝑥, 𝑦, 𝑓⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = 𝑏))
4 eqeq2 2741 . . . . . 6 (𝑏 = ⟨𝑥, 𝑦, 𝑔⟩ → (⟨𝑥, 𝑦, 𝑓⟩ = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩))
5 eumo 2571 . . . . . . . 8 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
65ad2antrr 726 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
7 moel 3373 . . . . . . 7 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
86, 7sylib 218 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
9 eqid 2729 . . . . . . . 8 (Arrow‘𝐶) = (Arrow‘𝐶)
10 eqid 2729 . . . . . . . 8 (Homa𝐶) = (Homa𝐶)
119, 10homarw 17990 . . . . . . 7 (𝑥(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
12 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
13 euex 2570 . . . . . . . . . 10 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
149arwrcl 17988 . . . . . . . . . . 11 (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1930 . . . . . . . . . 10 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1613, 15syl 17 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1716ad2antrr 726 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat)
18 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
19 simplrl 776 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
20 simplrr 777 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
21 simprl 770 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
2210, 12, 17, 18, 19, 20, 21elhomai2 17978 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (𝑥(Homa𝐶)𝑦))
2311, 22sselid 3941 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (Arrow‘𝐶))
24 simprr 772 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
2510, 12, 17, 18, 19, 20, 24elhomai2 17978 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (𝑥(Homa𝐶)𝑦))
2611, 25sselid 3941 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (Arrow‘𝐶))
273, 4, 8, 23, 26rspc2dv 3600 . . . . 5 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩)
28 vex 3448 . . . . . . 7 𝑥 ∈ V
29 vex 3448 . . . . . . 7 𝑦 ∈ V
30 vex 3448 . . . . . . 7 𝑓 ∈ V
3128, 29, 30otth 5439 . . . . . 6 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑦𝑓 = 𝑔))
3231simp3bi 1147 . . . . 5 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ → 𝑓 = 𝑔)
3327, 32syl 17 . . . 4 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔)
3433ralrimivva 3178 . . 3 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
35 moel 3373 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
3634, 35sylibr 234 . 2 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
371, 2, 36, 16isthincd 49420 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wral 3044  cotp 4593  cfv 6500  (class class class)co 7370  Basecbs 17157  Hom chom 17209  Catccat 17607  Arrowcarw 17966  Homachoma 17967  ThinCatcthinc 49401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7373  df-homa 17970  df-arw 17971  df-thinc 49402
This theorem is referenced by:  arweutermc  49514
  Copyright terms: Public domain W3C validator