Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweuthinc Structured version   Visualization version   GIF version

Theorem arweuthinc 49534
Description: If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweuthinc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweuthinc
Dummy variables 𝑏 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2730 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqeq1 2733 . . . . . 6 (𝑎 = ⟨𝑥, 𝑦, 𝑓⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = 𝑏))
4 eqeq2 2741 . . . . . 6 (𝑏 = ⟨𝑥, 𝑦, 𝑔⟩ → (⟨𝑥, 𝑦, 𝑓⟩ = 𝑏 ↔ ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩))
5 eumo 2571 . . . . . . . 8 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
65ad2antrr 726 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
7 moel 3365 . . . . . . 7 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
86, 7sylib 218 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
9 eqid 2729 . . . . . . . 8 (Arrow‘𝐶) = (Arrow‘𝐶)
10 eqid 2729 . . . . . . . 8 (Homa𝐶) = (Homa𝐶)
119, 10homarw 17953 . . . . . . 7 (𝑥(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
12 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
13 euex 2570 . . . . . . . . . 10 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
149arwrcl 17951 . . . . . . . . . . 11 (𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1930 . . . . . . . . . 10 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1613, 15syl 17 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ Cat)
1716ad2antrr 726 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐶 ∈ Cat)
18 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
19 simplrl 776 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
20 simplrr 777 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
21 simprl 770 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
2210, 12, 17, 18, 19, 20, 21elhomai2 17941 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (𝑥(Homa𝐶)𝑦))
2311, 22sselid 3933 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ ∈ (Arrow‘𝐶))
24 simprr 772 . . . . . . . 8 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
2510, 12, 17, 18, 19, 20, 24elhomai2 17941 . . . . . . 7 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (𝑥(Homa𝐶)𝑦))
2611, 25sselid 3933 . . . . . 6 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑔⟩ ∈ (Arrow‘𝐶))
273, 4, 8, 23, 26rspc2dv 3592 . . . . 5 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩)
28 vex 3440 . . . . . . 7 𝑥 ∈ V
29 vex 3440 . . . . . . 7 𝑦 ∈ V
30 vex 3440 . . . . . . 7 𝑓 ∈ V
3128, 29, 30otth 5427 . . . . . 6 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ ↔ (𝑥 = 𝑥𝑦 = 𝑦𝑓 = 𝑔))
3231simp3bi 1147 . . . . 5 (⟨𝑥, 𝑦, 𝑓⟩ = ⟨𝑥, 𝑦, 𝑔⟩ → 𝑓 = 𝑔)
3327, 32syl 17 . . . 4 (((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 = 𝑔)
3433ralrimivva 3172 . . 3 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
35 moel 3365 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)𝑓 = 𝑔)
3634, 35sylibr 234 . 2 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
371, 2, 36, 16isthincd 49441 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wral 3044  cotp 4585  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  Catccat 17570  Arrowcarw 17929  Homachoma 17930  ThinCatcthinc 49422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-homa 17933  df-arw 17934  df-thinc 49423
This theorem is referenced by:  arweutermc  49535
  Copyright terms: Public domain W3C validator