| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfs | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| Ref | Expression |
|---|---|
| cantnfs | ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | eqid 2737 | . . . . . 6 ⊢ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} | |
| 3 | cantnfs.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 4 | cantnfs.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 5 | 2, 3, 4 | cantnfdm 9704 | . . . . 5 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
| 6 | 1, 5 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
| 7 | 6 | eleq2d 2827 | . . 3 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅})) |
| 8 | breq1 5146 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅)) | |
| 9 | 8 | elrab 3692 | . . 3 ⊢ (𝐹 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴 ↑m 𝐵) ∧ 𝐹 finSupp ∅)) |
| 10 | 7, 9 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ (𝐴 ↑m 𝐵) ∧ 𝐹 finSupp ∅))) |
| 11 | 3, 4 | elmapd 8880 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
| 12 | 11 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝐴 ↑m 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 13 | 10, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 ∅c0 4333 class class class wbr 5143 dom cdm 5685 Oncon0 6384 ⟶wf 6557 (class class class)co 7431 ↑m cmap 8866 finSupp cfsupp 9401 CNF ccnf 9701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seqom 8488 df-map 8868 df-cnf 9702 |
| This theorem is referenced by: cantnfcl 9707 cantnfle 9711 cantnflt 9712 cantnff 9714 cantnf0 9715 cantnfrescl 9716 cantnfp1lem1 9718 cantnfp1lem2 9719 cantnfp1lem3 9720 cantnfp1 9721 oemapvali 9724 cantnflem1a 9725 cantnflem1b 9726 cantnflem1c 9727 cantnflem1d 9728 cantnflem1 9729 cantnflem3 9731 cantnf 9733 cnfcomlem 9739 cnfcom 9740 cnfcom2lem 9741 cnfcom3lem 9743 cnfcom3 9744 cantnfub 43334 cantnfresb 43337 cantnf2 43338 naddcnff 43375 naddcnffo 43377 naddcnfcom 43379 naddcnfid1 43380 naddcnfid2 43381 naddcnfass 43382 |
| Copyright terms: Public domain | W3C validator |