![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfs | Structured version Visualization version GIF version |
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
cantnfs | ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | eqid 2825 | . . . . . 6 ⊢ {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} | |
3 | cantnfs.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ On) | |
4 | cantnfs.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
5 | 2, 3, 4 | cantnfdm 8838 | . . . . 5 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅}) |
6 | 1, 5 | syl5eq 2873 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅}) |
7 | 6 | eleq2d 2892 | . . 3 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅})) |
8 | breq1 4876 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅)) | |
9 | 8 | elrab 3585 | . . 3 ⊢ (𝐹 ∈ {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ∧ 𝐹 finSupp ∅)) |
10 | 7, 9 | syl6bb 279 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ∧ 𝐹 finSupp ∅))) |
11 | 3, 4 | elmapd 8136 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
12 | 11 | anbi1d 625 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝐴 ↑𝑚 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
13 | 10, 12 | bitrd 271 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3121 ∅c0 4144 class class class wbr 4873 dom cdm 5342 Oncon0 5963 ⟶wf 6119 (class class class)co 6905 ↑𝑚 cmap 8122 finSupp cfsupp 8544 CNF ccnf 8835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-seqom 7809 df-map 8124 df-cnf 8836 |
This theorem is referenced by: cantnfcl 8841 cantnfle 8845 cantnflt 8846 cantnff 8848 cantnf0 8849 cantnfrescl 8850 cantnfp1lem1 8852 cantnfp1lem2 8853 cantnfp1lem3 8854 cantnfp1 8855 oemapvali 8858 cantnflem1a 8859 cantnflem1b 8860 cantnflem1c 8861 cantnflem1d 8862 cantnflem1 8863 cantnflem3 8865 cantnf 8867 cnfcomlem 8873 cnfcom 8874 cnfcom2lem 8875 cnfcom3lem 8877 cnfcom3 8878 |
Copyright terms: Public domain | W3C validator |