Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfs Structured version   Visualization version   GIF version

Theorem cantnfs 8840
 Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfs (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))

Proof of Theorem cantnfs
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 eqid 2825 . . . . . 6 {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
3 cantnfs.a . . . . . 6 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
52, 3, 4cantnfdm 8838 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
61, 5syl5eq 2873 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
76eleq2d 2892 . . 3 (𝜑 → (𝐹𝑆𝐹 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}))
8 breq1 4876 . . . 4 (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅))
98elrab 3585 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴𝑚 𝐵) ∧ 𝐹 finSupp ∅))
107, 9syl6bb 279 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹 ∈ (𝐴𝑚 𝐵) ∧ 𝐹 finSupp ∅)))
113, 4elmapd 8136 . . 3 (𝜑 → (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴))
1211anbi1d 625 . 2 (𝜑 → ((𝐹 ∈ (𝐴𝑚 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
1310, 12bitrd 271 1 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658   ∈ wcel 2166  {crab 3121  ∅c0 4144   class class class wbr 4873  dom cdm 5342  Oncon0 5963  ⟶wf 6119  (class class class)co 6905   ↑𝑚 cmap 8122   finSupp cfsupp 8544   CNF ccnf 8835 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-seqom 7809  df-map 8124  df-cnf 8836 This theorem is referenced by:  cantnfcl  8841  cantnfle  8845  cantnflt  8846  cantnff  8848  cantnf0  8849  cantnfrescl  8850  cantnfp1lem1  8852  cantnfp1lem2  8853  cantnfp1lem3  8854  cantnfp1  8855  oemapvali  8858  cantnflem1a  8859  cantnflem1b  8860  cantnflem1c  8861  cantnflem1d  8862  cantnflem1  8863  cantnflem3  8865  cantnf  8867  cnfcomlem  8873  cnfcom  8874  cnfcom2lem  8875  cnfcom3lem  8877  cnfcom3  8878
 Copyright terms: Public domain W3C validator