![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfs | Structured version Visualization version GIF version |
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
cantnfs | ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | eqid 2731 | . . . . . 6 ⊢ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} | |
3 | cantnfs.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ On) | |
4 | cantnfs.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
5 | 2, 3, 4 | cantnfdm 9641 | . . . . 5 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
6 | 1, 5 | eqtrid 2783 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
7 | 6 | eleq2d 2818 | . . 3 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅})) |
8 | breq1 5144 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅)) | |
9 | 8 | elrab 3679 | . . 3 ⊢ (𝐹 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴 ↑m 𝐵) ∧ 𝐹 finSupp ∅)) |
10 | 7, 9 | bitrdi 286 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ (𝐴 ↑m 𝐵) ∧ 𝐹 finSupp ∅))) |
11 | 3, 4 | elmapd 8817 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
12 | 11 | anbi1d 630 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝐴 ↑m 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
13 | 10, 12 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3431 ∅c0 4318 class class class wbr 5141 dom cdm 5669 Oncon0 6353 ⟶wf 6528 (class class class)co 7393 ↑m cmap 8803 finSupp cfsupp 9344 CNF ccnf 9638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-seqom 8430 df-map 8805 df-cnf 9639 |
This theorem is referenced by: cantnfcl 9644 cantnfle 9648 cantnflt 9649 cantnff 9651 cantnf0 9652 cantnfrescl 9653 cantnfp1lem1 9655 cantnfp1lem2 9656 cantnfp1lem3 9657 cantnfp1 9658 oemapvali 9661 cantnflem1a 9662 cantnflem1b 9663 cantnflem1c 9664 cantnflem1d 9665 cantnflem1 9666 cantnflem3 9668 cantnf 9670 cnfcomlem 9676 cnfcom 9677 cnfcom2lem 9678 cnfcom3lem 9680 cnfcom3 9681 cantnfub 41842 cantnfresb 41845 cantnf2 41846 naddcnff 41883 naddcnffo 41885 naddcnfcom 41887 naddcnfid1 41888 naddcnfid2 41889 naddcnfass 41890 |
Copyright terms: Public domain | W3C validator |