MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfs Structured version   Visualization version   GIF version

Theorem cantnfs 9610
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfs (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))

Proof of Theorem cantnfs
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 eqid 2733 . . . . . 6 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3 cantnfs.a . . . . . 6 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
52, 3, 4cantnfdm 9608 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
61, 5eqtrid 2785 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
76eleq2d 2820 . . 3 (𝜑 → (𝐹𝑆𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
8 breq1 5112 . . . 4 (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅))
98elrab 3649 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅))
107, 9bitrdi 287 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅)))
113, 4elmapd 8785 . . 3 (𝜑 → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
1211anbi1d 631 . 2 (𝜑 → ((𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
1310, 12bitrd 279 1 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {crab 3406  c0 4286   class class class wbr 5109  dom cdm 5637  Oncon0 6321  wf 6496  (class class class)co 7361  m cmap 8771   finSupp cfsupp 9311   CNF ccnf 9605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-seqom 8398  df-map 8773  df-cnf 9606
This theorem is referenced by:  cantnfcl  9611  cantnfle  9615  cantnflt  9616  cantnff  9618  cantnf0  9619  cantnfrescl  9620  cantnfp1lem1  9622  cantnfp1lem2  9623  cantnfp1lem3  9624  cantnfp1  9625  oemapvali  9628  cantnflem1a  9629  cantnflem1b  9630  cantnflem1c  9631  cantnflem1d  9632  cantnflem1  9633  cantnflem3  9635  cantnf  9637  cnfcomlem  9643  cnfcom  9644  cnfcom2lem  9645  cnfcom3lem  9647  cnfcom3  9648  cantnfub  41703  cantnfresb  41706  cantnf2  41707  naddcnff  41725  naddcnffo  41727  naddcnfcom  41729  naddcnfid1  41730  naddcnfid2  41731  naddcnfass  41732
  Copyright terms: Public domain W3C validator