MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfs Structured version   Visualization version   GIF version

Theorem cantnfs 9424
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfs (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))

Proof of Theorem cantnfs
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 eqid 2738 . . . . . 6 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3 cantnfs.a . . . . . 6 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
52, 3, 4cantnfdm 9422 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
61, 5eqtrid 2790 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
76eleq2d 2824 . . 3 (𝜑 → (𝐹𝑆𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
8 breq1 5077 . . . 4 (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅))
98elrab 3624 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅))
107, 9bitrdi 287 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅)))
113, 4elmapd 8629 . . 3 (𝜑 → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
1211anbi1d 630 . 2 (𝜑 → ((𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
1310, 12bitrd 278 1 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  c0 4256   class class class wbr 5074  dom cdm 5589  Oncon0 6266  wf 6429  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-map 8617  df-cnf 9420
This theorem is referenced by:  cantnfcl  9425  cantnfle  9429  cantnflt  9430  cantnff  9432  cantnf0  9433  cantnfrescl  9434  cantnfp1lem1  9436  cantnfp1lem2  9437  cantnfp1lem3  9438  cantnfp1  9439  oemapvali  9442  cantnflem1a  9443  cantnflem1b  9444  cantnflem1c  9445  cantnflem1d  9446  cantnflem1  9447  cantnflem3  9449  cantnf  9451  cnfcomlem  9457  cnfcom  9458  cnfcom2lem  9459  cnfcom3lem  9461  cnfcom3  9462
  Copyright terms: Public domain W3C validator