MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardval3 Structured version   Visualization version   GIF version

Theorem cardval3 9905
Description: An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
cardval3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐴 ∈ dom card → 𝐴 ∈ V)
2 isnum2 9898 . . . 4 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
3 rabn0 4352 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 intex 5299 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
52, 3, 43bitr2i 299 . . 3 (𝐴 ∈ dom card ↔ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
65biimpi 216 . 2 (𝐴 ∈ dom card → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
7 breq2 5111 . . . . 5 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
87rabbidv 3413 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑥𝑦} = {𝑥 ∈ On ∣ 𝑥𝐴})
98inteqd 4915 . . 3 (𝑦 = 𝐴 {𝑥 ∈ On ∣ 𝑥𝑦} = {𝑥 ∈ On ∣ 𝑥𝐴})
10 df-card 9892 . . 3 card = (𝑦 ∈ V ↦ {𝑥 ∈ On ∣ 𝑥𝑦})
119, 10fvmptg 6966 . 2 ((𝐴 ∈ V ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V) → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
121, 6, 11syl2anc 584 1 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  c0 4296   cint 4910   class class class wbr 5107  dom cdm 5638  Oncon0 6332  cfv 6511  cen 8915  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-en 8919  df-card 9892
This theorem is referenced by:  cardid2  9906  oncardval  9908  cardidm  9912  cardne  9918  cardval  10499
  Copyright terms: Public domain W3C validator