MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardval3 Structured version   Visualization version   GIF version

Theorem cardval3 9365
Description: An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
cardval3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴 ∈ dom card → 𝐴 ∈ V)
2 isnum2 9358 . . . 4 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
3 rabn0 4293 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 intex 5204 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
52, 3, 43bitr2i 302 . . 3 (𝐴 ∈ dom card ↔ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
65biimpi 219 . 2 (𝐴 ∈ dom card → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
7 breq2 5034 . . . . 5 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
87rabbidv 3427 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑥𝑦} = {𝑥 ∈ On ∣ 𝑥𝐴})
98inteqd 4843 . . 3 (𝑦 = 𝐴 {𝑥 ∈ On ∣ 𝑥𝑦} = {𝑥 ∈ On ∣ 𝑥𝐴})
10 df-card 9352 . . 3 card = (𝑦 ∈ V ↦ {𝑥 ∈ On ∣ 𝑥𝑦})
119, 10fvmptg 6743 . 2 ((𝐴 ∈ V ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V) → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
121, 6, 11syl2anc 587 1 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  Vcvv 3441  c0 4243   cint 4838   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cfv 6324  cen 8489  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-en 8493  df-card 9352
This theorem is referenced by:  cardid2  9366  oncardval  9368  cardidm  9372  cardne  9378  cardval  9957
  Copyright terms: Public domain W3C validator