MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardval3 Structured version   Visualization version   GIF version

Theorem cardval3 9943
Description: An alternate definition of the value of (cardβ€˜π΄) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
cardval3 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem cardval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐴 ∈ dom card β†’ 𝐴 ∈ V)
2 isnum2 9936 . . . 4 (𝐴 ∈ dom card ↔ βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴)
3 rabn0 4384 . . . 4 ({π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} β‰  βˆ… ↔ βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴)
4 intex 5336 . . . 4 ({π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} β‰  βˆ… ↔ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} ∈ V)
52, 3, 43bitr2i 298 . . 3 (𝐴 ∈ dom card ↔ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} ∈ V)
65biimpi 215 . 2 (𝐴 ∈ dom card β†’ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} ∈ V)
7 breq2 5151 . . . . 5 (𝑦 = 𝐴 β†’ (π‘₯ β‰ˆ 𝑦 ↔ π‘₯ β‰ˆ 𝐴))
87rabbidv 3440 . . . 4 (𝑦 = 𝐴 β†’ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝑦} = {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
98inteqd 4954 . . 3 (𝑦 = 𝐴 β†’ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝑦} = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
10 df-card 9930 . . 3 card = (𝑦 ∈ V ↦ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝑦})
119, 10fvmptg 6993 . 2 ((𝐴 ∈ V ∧ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} ∈ V) β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
121, 6, 11syl2anc 584 1 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  {crab 3432  Vcvv 3474  βˆ…c0 4321  βˆ© cint 4949   class class class wbr 5147  dom cdm 5675  Oncon0 6361  β€˜cfv 6540   β‰ˆ cen 8932  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-en 8936  df-card 9930
This theorem is referenced by:  cardid2  9944  oncardval  9946  cardidm  9950  cardne  9956  cardval  10537
  Copyright terms: Public domain W3C validator