| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardval3 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| cardval3 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝐴 ∈ dom card → 𝐴 ∈ V) | |
| 2 | isnum2 9874 | . . . 4 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
| 3 | rabn0 4348 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
| 4 | intex 5294 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) | |
| 5 | 2, 3, 4 | 3bitr2i 299 | . . 3 ⊢ (𝐴 ∈ dom card ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) |
| 6 | 5 | biimpi 216 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) |
| 7 | breq2 5106 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴)) | |
| 8 | 7 | rabbidv 3410 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦} = {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| 9 | 8 | inteqd 4911 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦} = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| 10 | df-card 9868 | . . 3 ⊢ card = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦}) | |
| 11 | 9, 10 | fvmptg 6948 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| 12 | 1, 6, 11 | syl2anc 584 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 Vcvv 3444 ∅c0 4292 ∩ cint 4906 class class class wbr 5102 dom cdm 5631 Oncon0 6320 ‘cfv 6499 ≈ cen 8892 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-en 8896 df-card 9868 |
| This theorem is referenced by: cardid2 9882 oncardval 9884 cardidm 9888 cardne 9894 cardval 10475 |
| Copyright terms: Public domain | W3C validator |