![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardval3 | Structured version Visualization version GIF version |
Description: An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
cardval3 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ dom card → 𝐴 ∈ V) | |
2 | isnum2 9946 | . . . 4 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
3 | rabn0 4385 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
4 | intex 5337 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) | |
5 | 2, 3, 4 | 3bitr2i 299 | . . 3 ⊢ (𝐴 ∈ dom card ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) |
6 | 5 | biimpi 215 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) |
7 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴)) | |
8 | 7 | rabbidv 3439 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦} = {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
9 | 8 | inteqd 4955 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦} = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
10 | df-card 9940 | . . 3 ⊢ card = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦}) | |
11 | 9, 10 | fvmptg 6996 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
12 | 1, 6, 11 | syl2anc 583 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 {crab 3431 Vcvv 3473 ∅c0 4322 ∩ cint 4950 class class class wbr 5148 dom cdm 5676 Oncon0 6364 ‘cfv 6543 ≈ cen 8942 cardccrd 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-en 8946 df-card 9940 |
This theorem is referenced by: cardid2 9954 oncardval 9956 cardidm 9960 cardne 9966 cardval 10547 |
Copyright terms: Public domain | W3C validator |