| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardval3 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| cardval3 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ dom card → 𝐴 ∈ V) | |
| 2 | isnum2 9838 | . . . 4 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
| 3 | rabn0 4336 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
| 4 | intex 5280 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) | |
| 5 | 2, 3, 4 | 3bitr2i 299 | . . 3 ⊢ (𝐴 ∈ dom card ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) |
| 6 | 5 | biimpi 216 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) |
| 7 | breq2 5093 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴)) | |
| 8 | 7 | rabbidv 3402 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦} = {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| 9 | 8 | inteqd 4900 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦} = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| 10 | df-card 9832 | . . 3 ⊢ card = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝑦}) | |
| 11 | 9, 10 | fvmptg 6927 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| 12 | 1, 6, 11 | syl2anc 584 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 Vcvv 3436 ∅c0 4280 ∩ cint 4895 class class class wbr 5089 dom cdm 5614 Oncon0 6306 ‘cfv 6481 ≈ cen 8866 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-en 8870 df-card 9832 |
| This theorem is referenced by: cardid2 9846 oncardval 9848 cardidm 9852 cardne 9858 cardval 10437 |
| Copyright terms: Public domain | W3C validator |