![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardval3 | Structured version Visualization version GIF version |
Description: An alternate definition of the value of (cardβπ΄) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
cardval3 | β’ (π΄ β dom card β (cardβπ΄) = β© {π₯ β On β£ π₯ β π΄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π΄ β dom card β π΄ β V) | |
2 | isnum2 9936 | . . . 4 β’ (π΄ β dom card β βπ₯ β On π₯ β π΄) | |
3 | rabn0 4384 | . . . 4 β’ ({π₯ β On β£ π₯ β π΄} β β β βπ₯ β On π₯ β π΄) | |
4 | intex 5336 | . . . 4 β’ ({π₯ β On β£ π₯ β π΄} β β β β© {π₯ β On β£ π₯ β π΄} β V) | |
5 | 2, 3, 4 | 3bitr2i 298 | . . 3 β’ (π΄ β dom card β β© {π₯ β On β£ π₯ β π΄} β V) |
6 | 5 | biimpi 215 | . 2 β’ (π΄ β dom card β β© {π₯ β On β£ π₯ β π΄} β V) |
7 | breq2 5151 | . . . . 5 β’ (π¦ = π΄ β (π₯ β π¦ β π₯ β π΄)) | |
8 | 7 | rabbidv 3440 | . . . 4 β’ (π¦ = π΄ β {π₯ β On β£ π₯ β π¦} = {π₯ β On β£ π₯ β π΄}) |
9 | 8 | inteqd 4954 | . . 3 β’ (π¦ = π΄ β β© {π₯ β On β£ π₯ β π¦} = β© {π₯ β On β£ π₯ β π΄}) |
10 | df-card 9930 | . . 3 β’ card = (π¦ β V β¦ β© {π₯ β On β£ π₯ β π¦}) | |
11 | 9, 10 | fvmptg 6993 | . 2 β’ ((π΄ β V β§ β© {π₯ β On β£ π₯ β π΄} β V) β (cardβπ΄) = β© {π₯ β On β£ π₯ β π΄}) |
12 | 1, 6, 11 | syl2anc 584 | 1 β’ (π΄ β dom card β (cardβπ΄) = β© {π₯ β On β£ π₯ β π΄}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 βwrex 3070 {crab 3432 Vcvv 3474 β c0 4321 β© cint 4949 class class class wbr 5147 dom cdm 5675 Oncon0 6361 βcfv 6540 β cen 8932 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-en 8936 df-card 9930 |
This theorem is referenced by: cardid2 9944 oncardval 9946 cardidm 9950 cardne 9956 cardval 10537 |
Copyright terms: Public domain | W3C validator |