Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpnum | Structured version Visualization version GIF version |
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xpnum | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnum2 9747 | . 2 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
2 | isnum2 9747 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝐵) | |
3 | reeanv 3214 | . . 3 ⊢ (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃𝑦 ∈ On 𝑦 ≈ 𝐵)) | |
4 | omcl 8397 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ∈ On) | |
5 | omxpen 8899 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦)) | |
6 | xpen 8965 | . . . . . . 7 ⊢ ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) | |
7 | entr 8827 | . . . . . . 7 ⊢ (((𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) | |
8 | 5, 6, 7 | syl2an 597 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) |
9 | isnumi 9748 | . . . . . 6 ⊢ (((𝑥 ·o 𝑦) ∈ On ∧ (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ dom card) | |
10 | 4, 8, 9 | syl2an2r 683 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵)) → (𝐴 × 𝐵) ∈ dom card) |
11 | 10 | ex 414 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card)) |
12 | 11 | rexlimivv 3193 | . . 3 ⊢ (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
13 | 3, 12 | sylbir 234 | . 2 ⊢ ((∃𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃𝑦 ∈ On 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
14 | 1, 2, 13 | syl2anb 599 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∃wrex 3071 class class class wbr 5081 × cxp 5598 dom cdm 5600 Oncon0 6281 (class class class)co 7307 ·o comu 8326 ≈ cen 8761 cardccrd 9737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-omul 8333 df-er 8529 df-en 8765 df-dom 8766 df-card 9741 |
This theorem is referenced by: iunfictbso 9916 znnen 15966 qnnen 15967 ptcmplem2 23249 finixpnum 35806 poimirlem32 35853 isnumbasgrplem2 40967 |
Copyright terms: Public domain | W3C validator |