![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpnum | Structured version Visualization version GIF version |
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xpnum | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnum2 9937 | . 2 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
2 | isnum2 9937 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝐵) | |
3 | reeanv 3227 | . . 3 ⊢ (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃𝑦 ∈ On 𝑦 ≈ 𝐵)) | |
4 | omcl 8533 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ∈ On) | |
5 | omxpen 9071 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦)) | |
6 | xpen 9137 | . . . . . . 7 ⊢ ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) | |
7 | entr 8999 | . . . . . . 7 ⊢ (((𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) | |
8 | 5, 6, 7 | syl2an 597 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) |
9 | isnumi 9938 | . . . . . 6 ⊢ (((𝑥 ·o 𝑦) ∈ On ∧ (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ dom card) | |
10 | 4, 8, 9 | syl2an2r 684 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵)) → (𝐴 × 𝐵) ∈ dom card) |
11 | 10 | ex 414 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card)) |
12 | 11 | rexlimivv 3200 | . . 3 ⊢ (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
13 | 3, 12 | sylbir 234 | . 2 ⊢ ((∃𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃𝑦 ∈ On 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
14 | 1, 2, 13 | syl2anb 599 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 class class class wbr 5148 × cxp 5674 dom cdm 5676 Oncon0 6362 (class class class)co 7406 ·o comu 8461 ≈ cen 8933 cardccrd 9927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-oadd 8467 df-omul 8468 df-er 8700 df-en 8937 df-dom 8938 df-card 9931 |
This theorem is referenced by: iunfictbso 10106 znnen 16152 qnnen 16153 ptcmplem2 23549 finixpnum 36462 poimirlem32 36509 isnumbasgrplem2 41832 |
Copyright terms: Public domain | W3C validator |