MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnum Structured version   Visualization version   GIF version

Theorem xpnum 9911
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpnum ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card)

Proof of Theorem xpnum
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnum2 9905 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
2 isnum2 9905 . 2 (𝐵 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦𝐵)
3 reeanv 3210 . . 3 (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥𝐴𝑦𝐵) ↔ (∃𝑥 ∈ On 𝑥𝐴 ∧ ∃𝑦 ∈ On 𝑦𝐵))
4 omcl 8503 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ∈ On)
5 omxpen 9048 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦))
6 xpen 9110 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑥 × 𝑦) ≈ (𝐴 × 𝐵))
7 entr 8980 . . . . . . 7 (((𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵))
85, 6, 7syl2an 596 . . . . . 6 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵))
9 isnumi 9906 . . . . . 6 (((𝑥 ·o 𝑦) ∈ On ∧ (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ dom card)
104, 8, 9syl2an2r 685 . . . . 5 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥𝐴𝑦𝐵)) → (𝐴 × 𝐵) ∈ dom card)
1110ex 412 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card))
1211rexlimivv 3180 . . 3 (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card)
133, 12sylbir 235 . 2 ((∃𝑥 ∈ On 𝑥𝐴 ∧ ∃𝑦 ∈ On 𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card)
141, 2, 13syl2anb 598 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3054   class class class wbr 5110   × cxp 5639  dom cdm 5641  Oncon0 6335  (class class class)co 7390   ·o comu 8435  cen 8918  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-en 8922  df-dom 8923  df-card 9899
This theorem is referenced by:  iunfictbso  10074  znnen  16187  qnnen  16188  ptcmplem2  23947  finixpnum  37606  poimirlem32  37653  isnumbasgrplem2  43100
  Copyright terms: Public domain W3C validator