MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnum Structured version   Visualization version   GIF version

Theorem xpnum 9992
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpnum ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card)

Proof of Theorem xpnum
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnum2 9986 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
2 isnum2 9986 . 2 (𝐵 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦𝐵)
3 reeanv 3228 . . 3 (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥𝐴𝑦𝐵) ↔ (∃𝑥 ∈ On 𝑥𝐴 ∧ ∃𝑦 ∈ On 𝑦𝐵))
4 omcl 8575 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ∈ On)
5 omxpen 9115 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦))
6 xpen 9181 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑥 × 𝑦) ≈ (𝐴 × 𝐵))
7 entr 9047 . . . . . . 7 (((𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵))
85, 6, 7syl2an 596 . . . . . 6 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵))
9 isnumi 9987 . . . . . 6 (((𝑥 ·o 𝑦) ∈ On ∧ (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ dom card)
104, 8, 9syl2an2r 685 . . . . 5 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥𝐴𝑦𝐵)) → (𝐴 × 𝐵) ∈ dom card)
1110ex 412 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card))
1211rexlimivv 3200 . . 3 (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card)
133, 12sylbir 235 . 2 ((∃𝑥 ∈ On 𝑥𝐴 ∧ ∃𝑦 ∈ On 𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card)
141, 2, 13syl2anb 598 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wrex 3069   class class class wbr 5142   × cxp 5682  dom cdm 5684  Oncon0 6383  (class class class)co 7432   ·o comu 8505  cen 8983  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-omul 8512  df-er 8746  df-en 8987  df-dom 8988  df-card 9980
This theorem is referenced by:  iunfictbso  10155  znnen  16249  qnnen  16250  ptcmplem2  24062  finixpnum  37613  poimirlem32  37660  isnumbasgrplem2  43121
  Copyright terms: Public domain W3C validator