MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnum Structured version   Visualization version   GIF version

Theorem xpnum 9753
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpnum ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card)

Proof of Theorem xpnum
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnum2 9747 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
2 isnum2 9747 . 2 (𝐵 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦𝐵)
3 reeanv 3214 . . 3 (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥𝐴𝑦𝐵) ↔ (∃𝑥 ∈ On 𝑥𝐴 ∧ ∃𝑦 ∈ On 𝑦𝐵))
4 omcl 8397 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ∈ On)
5 omxpen 8899 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦))
6 xpen 8965 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑥 × 𝑦) ≈ (𝐴 × 𝐵))
7 entr 8827 . . . . . . 7 (((𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵))
85, 6, 7syl2an 597 . . . . . 6 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵))
9 isnumi 9748 . . . . . 6 (((𝑥 ·o 𝑦) ∈ On ∧ (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ dom card)
104, 8, 9syl2an2r 683 . . . . 5 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥𝐴𝑦𝐵)) → (𝐴 × 𝐵) ∈ dom card)
1110ex 414 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card))
1211rexlimivv 3193 . . 3 (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card)
133, 12sylbir 234 . 2 ((∃𝑥 ∈ On 𝑥𝐴 ∧ ∃𝑦 ∈ On 𝑦𝐵) → (𝐴 × 𝐵) ∈ dom card)
141, 2, 13syl2anb 599 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  wrex 3071   class class class wbr 5081   × cxp 5598  dom cdm 5600  Oncon0 6281  (class class class)co 7307   ·o comu 8326  cen 8761  cardccrd 9737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-omul 8333  df-er 8529  df-en 8765  df-dom 8766  df-card 9741
This theorem is referenced by:  iunfictbso  9916  znnen  15966  qnnen  15967  ptcmplem2  23249  finixpnum  35806  poimirlem32  35853  isnumbasgrplem2  40967
  Copyright terms: Public domain W3C validator