![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpnum | Structured version Visualization version GIF version |
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xpnum | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnum2 10014 | . 2 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
2 | isnum2 10014 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝐵) | |
3 | reeanv 3235 | . . 3 ⊢ (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃𝑦 ∈ On 𝑦 ≈ 𝐵)) | |
4 | omcl 8592 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ∈ On) | |
5 | omxpen 9140 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦)) | |
6 | xpen 9206 | . . . . . . 7 ⊢ ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) | |
7 | entr 9066 | . . . . . . 7 ⊢ (((𝑥 ·o 𝑦) ≈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ≈ (𝐴 × 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) | |
8 | 5, 6, 7 | syl2an 595 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵)) → (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) |
9 | isnumi 10015 | . . . . . 6 ⊢ (((𝑥 ·o 𝑦) ∈ On ∧ (𝑥 ·o 𝑦) ≈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ dom card) | |
10 | 4, 8, 9 | syl2an2r 684 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵)) → (𝐴 × 𝐵) ∈ dom card) |
11 | 10 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card)) |
12 | 11 | rexlimivv 3207 | . . 3 ⊢ (∃𝑥 ∈ On ∃𝑦 ∈ On (𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
13 | 3, 12 | sylbir 235 | . 2 ⊢ ((∃𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃𝑦 ∈ On 𝑦 ≈ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
14 | 1, 2, 13 | syl2anb 597 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 × cxp 5698 dom cdm 5700 Oncon0 6395 (class class class)co 7448 ·o comu 8520 ≈ cen 9000 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-en 9004 df-dom 9005 df-card 10008 |
This theorem is referenced by: iunfictbso 10183 znnen 16260 qnnen 16261 ptcmplem2 24082 finixpnum 37565 poimirlem32 37612 isnumbasgrplem2 43061 |
Copyright terms: Public domain | W3C validator |