| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardidm | Structured version Visualization version GIF version | ||
| Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardidm | ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9994 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 9046 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | entr 9047 | . . . . . . . 8 ⊢ ((𝑦 ≈ 𝐴 ∧ 𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴)) | |
| 4 | 3 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ≈ (card‘𝐴) → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 6 | entr 9047 | . . . . . . . 8 ⊢ ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦 ≈ 𝐴) | |
| 7 | 6 | expcom 413 | . . . . . . 7 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 9 | 5, 8 | impbid 212 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ (card‘𝐴))) |
| 10 | 9 | rabbidv 3443 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 11 | 10 | inteqd 4950 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 12 | cardval3 9993 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 13 | cardon 9985 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 14 | oncardval 9996 | . . . 4 ⊢ ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 16 | 11, 12, 15 | 3eqtr4rd 2787 | . 2 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 17 | card0 9999 | . . 3 ⊢ (card‘∅) = ∅ | |
| 18 | ndmfv 6940 | . . . 4 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 19 | 18 | fveq2d 6909 | . . 3 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅)) |
| 20 | 17, 19, 18 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 21 | 16, 20 | pm2.61i 182 | 1 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 ∅c0 4332 ∩ cint 4945 class class class wbr 5142 dom cdm 5684 Oncon0 6383 ‘cfv 6560 ≈ cen 8983 cardccrd 9976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-card 9980 |
| This theorem is referenced by: oncard 10001 cardlim 10013 cardiun 10023 alephnbtwn2 10113 infenaleph 10132 dfac12k 10189 pwsdompw 10244 cardcf 10293 cfeq0 10297 cfflb 10300 alephval2 10613 cfpwsdom 10625 gch2 10716 tskcard 10822 hashcard 14395 iscard4 43551 |
| Copyright terms: Public domain | W3C validator |