MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 9372
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (card‘(card‘𝐴)) = (card‘𝐴)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9366 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8543 . . . . . . 7 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 entr 8544 . . . . . . . 8 ((𝑦𝐴𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴))
43expcom 417 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
6 entr 8544 . . . . . . . 8 ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦𝐴)
76expcom 417 . . . . . . 7 ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
95, 8impbid 215 . . . . 5 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
109rabbidv 3427 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1110inteqd 4843 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
12 cardval3 9365 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
13 cardon 9357 . . . 4 (card‘𝐴) ∈ On
14 oncardval 9368 . . . 4 ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1611, 12, 153eqtr4rd 2844 . 2 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
17 card0 9371 . . 3 (card‘∅) = ∅
18 ndmfv 6675 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1918fveq2d 6649 . . 3 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅))
2017, 19, 183eqtr4a 2859 . 2 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
2116, 20pm2.61i 185 1 (card‘(card‘𝐴)) = (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  {crab 3110  c0 4243   cint 4838   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cfv 6324  cen 8489  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-er 8272  df-en 8493  df-card 9352
This theorem is referenced by:  oncard  9373  cardlim  9385  cardiun  9395  alephnbtwn2  9483  infenaleph  9502  dfac12k  9558  pwsdompw  9615  cardcf  9663  cfeq0  9667  cfflb  9670  alephval2  9983  cfpwsdom  9995  gch2  10086  tskcard  10192  hashcard  13712  iscard4  40241
  Copyright terms: Public domain W3C validator