MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 9954
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9948 . . . . . . . 8 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
21ensymd 9001 . . . . . . 7 (𝐴 ∈ dom card β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
3 entr 9002 . . . . . . . 8 ((𝑦 β‰ˆ 𝐴 ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ 𝑦 β‰ˆ (cardβ€˜π΄))
43expcom 415 . . . . . . 7 (𝐴 β‰ˆ (cardβ€˜π΄) β†’ (𝑦 β‰ˆ 𝐴 β†’ 𝑦 β‰ˆ (cardβ€˜π΄)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ 𝐴 β†’ 𝑦 β‰ˆ (cardβ€˜π΄)))
6 entr 9002 . . . . . . . 8 ((𝑦 β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰ˆ 𝐴) β†’ 𝑦 β‰ˆ 𝐴)
76expcom 415 . . . . . . 7 ((cardβ€˜π΄) β‰ˆ 𝐴 β†’ (𝑦 β‰ˆ (cardβ€˜π΄) β†’ 𝑦 β‰ˆ 𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ (cardβ€˜π΄) β†’ 𝑦 β‰ˆ 𝐴))
95, 8impbid 211 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ 𝐴 ↔ 𝑦 β‰ˆ (cardβ€˜π΄)))
109rabbidv 3441 . . . 4 (𝐴 ∈ dom card β†’ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} = {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1110inteqd 4956 . . 3 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
12 cardval3 9947 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
13 cardon 9939 . . . 4 (cardβ€˜π΄) ∈ On
14 oncardval 9950 . . . 4 ((cardβ€˜π΄) ∈ On β†’ (cardβ€˜(cardβ€˜π΄)) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1611, 12, 153eqtr4rd 2784 . 2 (𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
17 card0 9953 . . 3 (cardβ€˜βˆ…) = βˆ…
18 ndmfv 6927 . . . 4 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜π΄) = βˆ…)
1918fveq2d 6896 . . 3 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜βˆ…))
2017, 19, 183eqtr4a 2799 . 2 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
2116, 20pm2.61i 182 1 (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {crab 3433  βˆ…c0 4323  βˆ© cint 4951   class class class wbr 5149  dom cdm 5677  Oncon0 6365  β€˜cfv 6544   β‰ˆ cen 8936  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-card 9934
This theorem is referenced by:  oncard  9955  cardlim  9967  cardiun  9977  alephnbtwn2  10067  infenaleph  10086  dfac12k  10142  pwsdompw  10199  cardcf  10247  cfeq0  10251  cfflb  10254  alephval2  10567  cfpwsdom  10579  gch2  10670  tskcard  10776  hashcard  14315  iscard4  42284
  Copyright terms: Public domain W3C validator