MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 9717
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (card‘(card‘𝐴)) = (card‘𝐴)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9711 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8791 . . . . . . 7 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 entr 8792 . . . . . . . 8 ((𝑦𝐴𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴))
43expcom 414 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
6 entr 8792 . . . . . . . 8 ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦𝐴)
76expcom 414 . . . . . . 7 ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
95, 8impbid 211 . . . . 5 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
109rabbidv 3414 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1110inteqd 4884 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
12 cardval3 9710 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
13 cardon 9702 . . . 4 (card‘𝐴) ∈ On
14 oncardval 9713 . . . 4 ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1611, 12, 153eqtr4rd 2789 . 2 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
17 card0 9716 . . 3 (card‘∅) = ∅
18 ndmfv 6804 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1918fveq2d 6778 . . 3 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅))
2017, 19, 183eqtr4a 2804 . 2 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
2116, 20pm2.61i 182 1 (card‘(card‘𝐴)) = (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  {crab 3068  c0 4256   cint 4879   class class class wbr 5074  dom cdm 5589  Oncon0 6266  cfv 6433  cen 8730  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-card 9697
This theorem is referenced by:  oncard  9718  cardlim  9730  cardiun  9740  alephnbtwn2  9828  infenaleph  9847  dfac12k  9903  pwsdompw  9960  cardcf  10008  cfeq0  10012  cfflb  10015  alephval2  10328  cfpwsdom  10340  gch2  10431  tskcard  10537  hashcard  14070  iscard4  41140
  Copyright terms: Public domain W3C validator