MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 9069
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (card‘(card‘𝐴)) = (card‘𝐴)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9063 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8244 . . . . . . 7 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 entr 8245 . . . . . . . 8 ((𝑦𝐴𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴))
43expcom 403 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
6 entr 8245 . . . . . . . 8 ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦𝐴)
76expcom 403 . . . . . . 7 ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
95, 8impbid 204 . . . . 5 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
109rabbidv 3371 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1110inteqd 4670 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
12 cardval3 9062 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
13 cardon 9054 . . . 4 (card‘𝐴) ∈ On
14 oncardval 9065 . . . 4 ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1611, 12, 153eqtr4rd 2842 . 2 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
17 card0 9068 . . 3 (card‘∅) = ∅
18 ndmfv 6439 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1918fveq2d 6413 . . 3 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅))
2017, 19, 183eqtr4a 2857 . 2 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
2116, 20pm2.61i 177 1 (card‘(card‘𝐴)) = (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1653  wcel 2157  {crab 3091  c0 4113   cint 4665   class class class wbr 4841  dom cdm 5310  Oncon0 5939  cfv 6099  cen 8190  cardccrd 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-ord 5942  df-on 5943  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-er 7980  df-en 8194  df-card 9049
This theorem is referenced by:  oncard  9070  cardlim  9082  cardiun  9092  alephnbtwn2  9179  infenaleph  9198  dfac12k  9255  pwsdompw  9312  cardcf  9360  cfeq0  9364  cfflb  9367  alephval2  9680  cfpwsdom  9692  gch2  9783  tskcard  9889  hashcard  13392
  Copyright terms: Public domain W3C validator