| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardidm | Structured version Visualization version GIF version | ||
| Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardidm | ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9972 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 9024 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | entr 9025 | . . . . . . . 8 ⊢ ((𝑦 ≈ 𝐴 ∧ 𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴)) | |
| 4 | 3 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ≈ (card‘𝐴) → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 6 | entr 9025 | . . . . . . . 8 ⊢ ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦 ≈ 𝐴) | |
| 7 | 6 | expcom 413 | . . . . . . 7 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 9 | 5, 8 | impbid 212 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ (card‘𝐴))) |
| 10 | 9 | rabbidv 3428 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 11 | 10 | inteqd 4932 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 12 | cardval3 9971 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 13 | cardon 9963 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 14 | oncardval 9974 | . . . 4 ⊢ ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 16 | 11, 12, 15 | 3eqtr4rd 2782 | . 2 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 17 | card0 9977 | . . 3 ⊢ (card‘∅) = ∅ | |
| 18 | ndmfv 6916 | . . . 4 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 19 | 18 | fveq2d 6885 | . . 3 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅)) |
| 20 | 17, 19, 18 | 3eqtr4a 2797 | . 2 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 21 | 16, 20 | pm2.61i 182 | 1 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ∅c0 4313 ∩ cint 4927 class class class wbr 5124 dom cdm 5659 Oncon0 6357 ‘cfv 6536 ≈ cen 8961 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-card 9958 |
| This theorem is referenced by: oncard 9979 cardlim 9991 cardiun 10001 alephnbtwn2 10091 infenaleph 10110 dfac12k 10167 pwsdompw 10222 cardcf 10271 cfeq0 10275 cfflb 10278 alephval2 10591 cfpwsdom 10603 gch2 10694 tskcard 10800 hashcard 14378 iscard4 43532 |
| Copyright terms: Public domain | W3C validator |