| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardidm | Structured version Visualization version GIF version | ||
| Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardidm | ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9882 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 8953 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | entr 8954 | . . . . . . . 8 ⊢ ((𝑦 ≈ 𝐴 ∧ 𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴)) | |
| 4 | 3 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ≈ (card‘𝐴) → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 6 | entr 8954 | . . . . . . . 8 ⊢ ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦 ≈ 𝐴) | |
| 7 | 6 | expcom 413 | . . . . . . 7 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 9 | 5, 8 | impbid 212 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ (card‘𝐴))) |
| 10 | 9 | rabbidv 3410 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 11 | 10 | inteqd 4911 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 12 | cardval3 9881 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 13 | cardon 9873 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 14 | oncardval 9884 | . . . 4 ⊢ ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 16 | 11, 12, 15 | 3eqtr4rd 2775 | . 2 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 17 | card0 9887 | . . 3 ⊢ (card‘∅) = ∅ | |
| 18 | ndmfv 6875 | . . . 4 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 19 | 18 | fveq2d 6844 | . . 3 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅)) |
| 20 | 17, 19, 18 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 21 | 16, 20 | pm2.61i 182 | 1 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∅c0 4292 ∩ cint 4906 class class class wbr 5102 dom cdm 5631 Oncon0 6320 ‘cfv 6499 ≈ cen 8892 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-card 9868 |
| This theorem is referenced by: oncard 9889 cardlim 9901 cardiun 9911 alephnbtwn2 10001 infenaleph 10020 dfac12k 10077 pwsdompw 10132 cardcf 10181 cfeq0 10185 cfflb 10188 alephval2 10501 cfpwsdom 10513 gch2 10604 tskcard 10710 hashcard 14296 iscard4 43515 |
| Copyright terms: Public domain | W3C validator |