MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 9956
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9950 . . . . . . . 8 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
21ensymd 9003 . . . . . . 7 (𝐴 ∈ dom card β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
3 entr 9004 . . . . . . . 8 ((𝑦 β‰ˆ 𝐴 ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ 𝑦 β‰ˆ (cardβ€˜π΄))
43expcom 412 . . . . . . 7 (𝐴 β‰ˆ (cardβ€˜π΄) β†’ (𝑦 β‰ˆ 𝐴 β†’ 𝑦 β‰ˆ (cardβ€˜π΄)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ 𝐴 β†’ 𝑦 β‰ˆ (cardβ€˜π΄)))
6 entr 9004 . . . . . . . 8 ((𝑦 β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰ˆ 𝐴) β†’ 𝑦 β‰ˆ 𝐴)
76expcom 412 . . . . . . 7 ((cardβ€˜π΄) β‰ˆ 𝐴 β†’ (𝑦 β‰ˆ (cardβ€˜π΄) β†’ 𝑦 β‰ˆ 𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ (cardβ€˜π΄) β†’ 𝑦 β‰ˆ 𝐴))
95, 8impbid 211 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ 𝐴 ↔ 𝑦 β‰ˆ (cardβ€˜π΄)))
109rabbidv 3438 . . . 4 (𝐴 ∈ dom card β†’ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} = {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1110inteqd 4954 . . 3 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
12 cardval3 9949 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
13 cardon 9941 . . . 4 (cardβ€˜π΄) ∈ On
14 oncardval 9952 . . . 4 ((cardβ€˜π΄) ∈ On β†’ (cardβ€˜(cardβ€˜π΄)) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1611, 12, 153eqtr4rd 2781 . 2 (𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
17 card0 9955 . . 3 (cardβ€˜βˆ…) = βˆ…
18 ndmfv 6925 . . . 4 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜π΄) = βˆ…)
1918fveq2d 6894 . . 3 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜βˆ…))
2017, 19, 183eqtr4a 2796 . 2 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
2116, 20pm2.61i 182 1 (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1539   ∈ wcel 2104  {crab 3430  βˆ…c0 4321  βˆ© cint 4949   class class class wbr 5147  dom cdm 5675  Oncon0 6363  β€˜cfv 6542   β‰ˆ cen 8938  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8705  df-en 8942  df-card 9936
This theorem is referenced by:  oncard  9957  cardlim  9969  cardiun  9979  alephnbtwn2  10069  infenaleph  10088  dfac12k  10144  pwsdompw  10201  cardcf  10249  cfeq0  10253  cfflb  10256  alephval2  10569  cfpwsdom  10581  gch2  10672  tskcard  10778  hashcard  14319  iscard4  42586
  Copyright terms: Public domain W3C validator