MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 10000
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (card‘(card‘𝐴)) = (card‘𝐴)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9994 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 9046 . . . . . . 7 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 entr 9047 . . . . . . . 8 ((𝑦𝐴𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴))
43expcom 413 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
6 entr 9047 . . . . . . . 8 ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦𝐴)
76expcom 413 . . . . . . 7 ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦𝐴))
95, 8impbid 212 . . . . 5 (𝐴 ∈ dom card → (𝑦𝐴𝑦 ≈ (card‘𝐴)))
109rabbidv 3443 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1110inteqd 4950 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
12 cardval3 9993 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
13 cardon 9985 . . . 4 (card‘𝐴) ∈ On
14 oncardval 9996 . . . 4 ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)})
1611, 12, 153eqtr4rd 2787 . 2 (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
17 card0 9999 . . 3 (card‘∅) = ∅
18 ndmfv 6940 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1918fveq2d 6909 . . 3 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅))
2017, 19, 183eqtr4a 2802 . 2 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴))
2116, 20pm2.61i 182 1 (card‘(card‘𝐴)) = (card‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  {crab 3435  c0 4332   cint 4945   class class class wbr 5142  dom cdm 5684  Oncon0 6383  cfv 6560  cen 8983  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-er 8746  df-en 8987  df-card 9980
This theorem is referenced by:  oncard  10001  cardlim  10013  cardiun  10023  alephnbtwn2  10113  infenaleph  10132  dfac12k  10189  pwsdompw  10244  cardcf  10293  cfeq0  10297  cfflb  10300  alephval2  10613  cfpwsdom  10625  gch2  10716  tskcard  10822  hashcard  14395  iscard4  43551
  Copyright terms: Public domain W3C validator