| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardidm | Structured version Visualization version GIF version | ||
| Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardidm | ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9849 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 8930 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | entr 8931 | . . . . . . . 8 ⊢ ((𝑦 ≈ 𝐴 ∧ 𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴)) | |
| 4 | 3 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ≈ (card‘𝐴) → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
| 6 | entr 8931 | . . . . . . . 8 ⊢ ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦 ≈ 𝐴) | |
| 7 | 6 | expcom 413 | . . . . . . 7 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
| 9 | 5, 8 | impbid 212 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ (card‘𝐴))) |
| 10 | 9 | rabbidv 3402 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 11 | 10 | inteqd 4901 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 12 | cardval3 9848 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 13 | cardon 9840 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 14 | oncardval 9851 | . . . 4 ⊢ ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
| 16 | 11, 12, 15 | 3eqtr4rd 2775 | . 2 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 17 | card0 9854 | . . 3 ⊢ (card‘∅) = ∅ | |
| 18 | ndmfv 6855 | . . . 4 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 19 | 18 | fveq2d 6826 | . . 3 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅)) |
| 20 | 17, 19, 18 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
| 21 | 16, 20 | pm2.61i 182 | 1 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 ∅c0 4284 ∩ cint 4896 class class class wbr 5092 dom cdm 5619 Oncon0 6307 ‘cfv 6482 ≈ cen 8869 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-card 9835 |
| This theorem is referenced by: oncard 9856 cardlim 9868 cardiun 9878 alephnbtwn2 9966 infenaleph 9985 dfac12k 10042 pwsdompw 10097 cardcf 10146 cfeq0 10150 cfflb 10153 alephval2 10466 cfpwsdom 10478 gch2 10569 tskcard 10675 hashcard 14262 iscard4 43526 |
| Copyright terms: Public domain | W3C validator |