MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardidm Structured version   Visualization version   GIF version

Theorem cardidm 9950
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardidm (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)

Proof of Theorem cardidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardid2 9944 . . . . . . . 8 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
21ensymd 8997 . . . . . . 7 (𝐴 ∈ dom card β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
3 entr 8998 . . . . . . . 8 ((𝑦 β‰ˆ 𝐴 ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ 𝑦 β‰ˆ (cardβ€˜π΄))
43expcom 414 . . . . . . 7 (𝐴 β‰ˆ (cardβ€˜π΄) β†’ (𝑦 β‰ˆ 𝐴 β†’ 𝑦 β‰ˆ (cardβ€˜π΄)))
52, 4syl 17 . . . . . 6 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ 𝐴 β†’ 𝑦 β‰ˆ (cardβ€˜π΄)))
6 entr 8998 . . . . . . . 8 ((𝑦 β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰ˆ 𝐴) β†’ 𝑦 β‰ˆ 𝐴)
76expcom 414 . . . . . . 7 ((cardβ€˜π΄) β‰ˆ 𝐴 β†’ (𝑦 β‰ˆ (cardβ€˜π΄) β†’ 𝑦 β‰ˆ 𝐴))
81, 7syl 17 . . . . . 6 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ (cardβ€˜π΄) β†’ 𝑦 β‰ˆ 𝐴))
95, 8impbid 211 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 β‰ˆ 𝐴 ↔ 𝑦 β‰ˆ (cardβ€˜π΄)))
109rabbidv 3440 . . . 4 (𝐴 ∈ dom card β†’ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} = {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1110inteqd 4954 . . 3 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
12 cardval3 9943 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
13 cardon 9935 . . . 4 (cardβ€˜π΄) ∈ On
14 oncardval 9946 . . . 4 ((cardβ€˜π΄) ∈ On β†’ (cardβ€˜(cardβ€˜π΄)) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1513, 14mp1i 13 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ (cardβ€˜π΄)})
1611, 12, 153eqtr4rd 2783 . 2 (𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
17 card0 9949 . . 3 (cardβ€˜βˆ…) = βˆ…
18 ndmfv 6923 . . . 4 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜π΄) = βˆ…)
1918fveq2d 6892 . . 3 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜βˆ…))
2017, 19, 183eqtr4a 2798 . 2 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄))
2116, 20pm2.61i 182 1 (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  βˆ…c0 4321  βˆ© cint 4949   class class class wbr 5147  dom cdm 5675  Oncon0 6361  β€˜cfv 6540   β‰ˆ cen 8932  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-card 9930
This theorem is referenced by:  oncard  9951  cardlim  9963  cardiun  9973  alephnbtwn2  10063  infenaleph  10082  dfac12k  10138  pwsdompw  10195  cardcf  10243  cfeq0  10247  cfflb  10250  alephval2  10563  cfpwsdom  10575  gch2  10666  tskcard  10772  hashcard  14311  iscard4  42269
  Copyright terms: Public domain W3C validator