Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Structured version   Visualization version   GIF version

Theorem cdleme1b 40245
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing 𝐹 is a lattice element. 𝐹 represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme1.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdleme1b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2 hllat 39381 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
4 simpr3 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
5 cdleme1.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cdleme1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 39307 . . . . 5 (𝑅𝐴𝑅𝐵)
84, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐵)
9 cdleme1.l . . . . . 6 = (le‘𝐾)
10 cdleme1.j . . . . . 6 = (join‘𝐾)
11 cdleme1.m . . . . . 6 = (meet‘𝐾)
12 cdleme1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
13 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
149, 10, 11, 6, 12, 13, 5cdleme0aa 40229 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)
15143adant3r3 1185 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑈𝐵)
165, 10latjcl 18449 . . . 4 ((𝐾 ∈ Lat ∧ 𝑅𝐵𝑈𝐵) → (𝑅 𝑈) ∈ 𝐵)
173, 8, 15, 16syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑈) ∈ 𝐵)
18 simpr2 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
195, 6atbase 39307 . . . . 5 (𝑄𝐴𝑄𝐵)
2018, 19syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐵)
21 simpr1 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
225, 6atbase 39307 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2321, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐵)
245, 10latjcl 18449 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
253, 23, 8, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑅) ∈ 𝐵)
265, 12lhpbase 40017 . . . . . 6 (𝑊𝐻𝑊𝐵)
2726ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑊𝐵)
285, 11latmcl 18450 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
293, 25, 27, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
305, 10latjcl 18449 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ((𝑃 𝑅) 𝑊) ∈ 𝐵) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
313, 20, 29, 30syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
325, 11latmcl 18450 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ 𝐵 ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
333, 17, 31, 32syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
341, 33eqeltrid 2838 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-lat 18442  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by:  cdleme3c  40249  cdleme4a  40258  cdleme5  40259  cdleme7e  40266  cdleme11  40289  cdleme15  40297  cdleme22gb  40313  cdleme19b  40323  cdleme19e  40326  cdleme20d  40331  cdleme20j  40337  cdleme20k  40338  cdleme20l2  40340  cdleme20l  40341  cdleme20m  40342  cdleme22e  40363  cdleme22eALTN  40364  cdleme22f  40365  cdleme27cl  40385  cdlemefr27cl  40422  cdleme35fnpq  40468
  Copyright terms: Public domain W3C validator