Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Structured version   Visualization version   GIF version

Theorem cdleme1b 40220
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing 𝐹 is a lattice element. 𝐹 represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme1.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdleme1b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2 hllat 39356 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
4 simpr3 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
5 cdleme1.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cdleme1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 39282 . . . . 5 (𝑅𝐴𝑅𝐵)
84, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐵)
9 cdleme1.l . . . . . 6 = (le‘𝐾)
10 cdleme1.j . . . . . 6 = (join‘𝐾)
11 cdleme1.m . . . . . 6 = (meet‘𝐾)
12 cdleme1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
13 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
149, 10, 11, 6, 12, 13, 5cdleme0aa 40204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)
15143adant3r3 1185 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑈𝐵)
165, 10latjcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ 𝑅𝐵𝑈𝐵) → (𝑅 𝑈) ∈ 𝐵)
173, 8, 15, 16syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑈) ∈ 𝐵)
18 simpr2 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
195, 6atbase 39282 . . . . 5 (𝑄𝐴𝑄𝐵)
2018, 19syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐵)
21 simpr1 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
225, 6atbase 39282 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2321, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐵)
245, 10latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
253, 23, 8, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑅) ∈ 𝐵)
265, 12lhpbase 39992 . . . . . 6 (𝑊𝐻𝑊𝐵)
2726ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑊𝐵)
285, 11latmcl 18399 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
293, 25, 27, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
305, 10latjcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ((𝑃 𝑅) 𝑊) ∈ 𝐵) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
313, 20, 29, 30syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
325, 11latmcl 18399 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ 𝐵 ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
333, 17, 31, 32syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
341, 33eqeltrid 2832 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-lat 18391  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  cdleme3c  40224  cdleme4a  40233  cdleme5  40234  cdleme7e  40241  cdleme11  40264  cdleme15  40272  cdleme22gb  40288  cdleme19b  40298  cdleme19e  40301  cdleme20d  40306  cdleme20j  40312  cdleme20k  40313  cdleme20l2  40315  cdleme20l  40316  cdleme20m  40317  cdleme22e  40338  cdleme22eALTN  40339  cdleme22f  40340  cdleme27cl  40360  cdlemefr27cl  40397  cdleme35fnpq  40443
  Copyright terms: Public domain W3C validator