Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Structured version   Visualization version   GIF version

Theorem cdleme1b 40208
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing 𝐹 is a lattice element. 𝐹 represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme1.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdleme1b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2 hllat 39344 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
4 simpr3 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
5 cdleme1.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cdleme1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 39270 . . . . 5 (𝑅𝐴𝑅𝐵)
84, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐵)
9 cdleme1.l . . . . . 6 = (le‘𝐾)
10 cdleme1.j . . . . . 6 = (join‘𝐾)
11 cdleme1.m . . . . . 6 = (meet‘𝐾)
12 cdleme1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
13 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
149, 10, 11, 6, 12, 13, 5cdleme0aa 40192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)
15143adant3r3 1183 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑈𝐵)
165, 10latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑅𝐵𝑈𝐵) → (𝑅 𝑈) ∈ 𝐵)
173, 8, 15, 16syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑈) ∈ 𝐵)
18 simpr2 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
195, 6atbase 39270 . . . . 5 (𝑄𝐴𝑄𝐵)
2018, 19syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐵)
21 simpr1 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
225, 6atbase 39270 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2321, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐵)
245, 10latjcl 18496 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
253, 23, 8, 24syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑅) ∈ 𝐵)
265, 12lhpbase 39980 . . . . . 6 (𝑊𝐻𝑊𝐵)
2726ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑊𝐵)
285, 11latmcl 18497 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
293, 25, 27, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
305, 10latjcl 18496 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ((𝑃 𝑅) 𝑊) ∈ 𝐵) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
313, 20, 29, 30syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
325, 11latmcl 18497 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ 𝐵 ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
333, 17, 31, 32syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
341, 33eqeltrid 2842 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  Latclat 18488  Atomscatm 39244  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-lat 18489  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-lhyp 39970
This theorem is referenced by:  cdleme3c  40212  cdleme4a  40221  cdleme5  40222  cdleme7e  40229  cdleme11  40252  cdleme15  40260  cdleme22gb  40276  cdleme19b  40286  cdleme19e  40289  cdleme20d  40294  cdleme20j  40300  cdleme20k  40301  cdleme20l2  40303  cdleme20l  40304  cdleme20m  40305  cdleme22e  40326  cdleme22eALTN  40327  cdleme22f  40328  cdleme27cl  40348  cdlemefr27cl  40385  cdleme35fnpq  40431
  Copyright terms: Public domain W3C validator