MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzmhm2 Structured version   Visualization version   GIF version

Theorem cntzmhm2 18861
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
cntzmhm.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
cntzmhm2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))

Proof of Theorem cntzmhm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzmhm.z . . . . 5 𝑍 = (Cntz‘𝐺)
2 cntzmhm.y . . . . 5 𝑌 = (Cntz‘𝐻)
31, 2cntzmhm 18860 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍𝑇)) → (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
43ralrimiva 3107 . . 3 (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍𝑇)(𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
5 ssralv 3983 . . 3 (𝑆 ⊆ (𝑍𝑇) → (∀𝑥 ∈ (𝑍𝑇)(𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)) → ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
64, 5mpan9 506 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
7 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2738 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
97, 8mhmf 18350 . . . . 5 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
109adantr 480 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
1110ffund 6588 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → Fun 𝐹)
12 simpr 484 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ (𝑍𝑇))
137, 1cntzssv 18849 . . . . 5 (𝑍𝑇) ⊆ (Base‘𝐺)
1412, 13sstrdi 3929 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ (Base‘𝐺))
1510fdmd 6595 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → dom 𝐹 = (Base‘𝐺))
1614, 15sseqtrrd 3958 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ dom 𝐹)
17 funimass4 6816 . . 3 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → ((𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)) ↔ ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
1811, 16, 17syl2anc 583 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → ((𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)) ↔ ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
196, 18mpbird 256 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  dom cdm 5580  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840   MndHom cmhm 18343  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-mhm 18345  df-cntz 18838
This theorem is referenced by:  gsumzmhm  19453  gsumzinv  19461
  Copyright terms: Public domain W3C validator