Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzmhm2 | Structured version Visualization version GIF version |
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzmhm.y | ⊢ 𝑌 = (Cntz‘𝐻) |
Ref | Expression |
---|---|
cntzmhm2 | ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzmhm.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
2 | cntzmhm.y | . . . . 5 ⊢ 𝑌 = (Cntz‘𝐻) | |
3 | 1, 2 | cntzmhm 18860 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍‘𝑇)) → (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
4 | 3 | ralrimiva 3107 | . . 3 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
5 | ssralv 3983 | . . 3 ⊢ (𝑆 ⊆ (𝑍‘𝑇) → (∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
6 | 4, 5 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
7 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
9 | 7, 8 | mhmf 18350 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
11 | 10 | ffund 6588 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → Fun 𝐹) |
12 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (𝑍‘𝑇)) | |
13 | 7, 1 | cntzssv 18849 | . . . . 5 ⊢ (𝑍‘𝑇) ⊆ (Base‘𝐺) |
14 | 12, 13 | sstrdi 3929 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (Base‘𝐺)) |
15 | 10 | fdmd 6595 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → dom 𝐹 = (Base‘𝐺)) |
16 | 14, 15 | sseqtrrd 3958 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ dom 𝐹) |
17 | funimass4 6816 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
18 | 11, 16, 17 | syl2anc 583 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) |
19 | 6, 18 | mpbird 256 | 1 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 dom cdm 5580 “ cima 5583 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 MndHom cmhm 18343 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-mhm 18345 df-cntz 18838 |
This theorem is referenced by: gsumzmhm 19453 gsumzinv 19461 |
Copyright terms: Public domain | W3C validator |