MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzmhm2 Structured version   Visualization version   GIF version

Theorem cntzmhm2 19329
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
cntzmhm.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
cntzmhm2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))

Proof of Theorem cntzmhm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzmhm.z . . . . 5 𝑍 = (Cntz‘𝐺)
2 cntzmhm.y . . . . 5 𝑌 = (Cntz‘𝐻)
31, 2cntzmhm 19328 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍𝑇)) → (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
43ralrimiva 3133 . . 3 (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍𝑇)(𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
5 ssralv 4032 . . 3 (𝑆 ⊆ (𝑍𝑇) → (∀𝑥 ∈ (𝑍𝑇)(𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)) → ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
64, 5mpan9 506 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
7 eqid 2734 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2734 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
97, 8mhmf 18771 . . . . 5 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
109adantr 480 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
1110ffund 6720 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → Fun 𝐹)
12 simpr 484 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ (𝑍𝑇))
137, 1cntzssv 19315 . . . . 5 (𝑍𝑇) ⊆ (Base‘𝐺)
1412, 13sstrdi 3976 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ (Base‘𝐺))
1510fdmd 6726 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → dom 𝐹 = (Base‘𝐺))
1614, 15sseqtrrd 4001 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ dom 𝐹)
17 funimass4 6953 . . 3 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → ((𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)) ↔ ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
1811, 16, 17syl2anc 584 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → ((𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)) ↔ ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
196, 18mpbird 257 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3931  dom cdm 5665  cima 5668  Fun wfun 6535  wf 6537  cfv 6541  (class class class)co 7413  Basecbs 17229   MndHom cmhm 18763  Cntzccntz 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-mhm 18765  df-cntz 19304
This theorem is referenced by:  gsumzmhm  19923  gsumzinv  19931
  Copyright terms: Public domain W3C validator