| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzmhm2 | Structured version Visualization version GIF version | ||
| Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzmhm.y | ⊢ 𝑌 = (Cntz‘𝐻) |
| Ref | Expression |
|---|---|
| cntzmhm2 | ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 2 | cntzmhm.y | . . . . 5 ⊢ 𝑌 = (Cntz‘𝐻) | |
| 3 | 1, 2 | cntzmhm 19328 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍‘𝑇)) → (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
| 4 | 3 | ralrimiva 3133 | . . 3 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
| 5 | ssralv 4032 | . . 3 ⊢ (𝑆 ⊆ (𝑍‘𝑇) → (∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
| 6 | 4, 5 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
| 7 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 8 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 9 | 7, 8 | mhmf 18771 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 11 | 10 | ffund 6720 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → Fun 𝐹) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (𝑍‘𝑇)) | |
| 13 | 7, 1 | cntzssv 19315 | . . . . 5 ⊢ (𝑍‘𝑇) ⊆ (Base‘𝐺) |
| 14 | 12, 13 | sstrdi 3976 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (Base‘𝐺)) |
| 15 | 10 | fdmd 6726 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → dom 𝐹 = (Base‘𝐺)) |
| 16 | 14, 15 | sseqtrrd 4001 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ dom 𝐹) |
| 17 | funimass4 6953 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
| 18 | 11, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) |
| 19 | 6, 18 | mpbird 257 | 1 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 dom cdm 5665 “ cima 5668 Fun wfun 6535 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 MndHom cmhm 18763 Cntzccntz 19302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-mhm 18765 df-cntz 19304 |
| This theorem is referenced by: gsumzmhm 19923 gsumzinv 19931 |
| Copyright terms: Public domain | W3C validator |