![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzmhm2 | Structured version Visualization version GIF version |
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzmhm.y | ⊢ 𝑌 = (Cntz‘𝐻) |
Ref | Expression |
---|---|
cntzmhm2 | ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzmhm.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
2 | cntzmhm.y | . . . . 5 ⊢ 𝑌 = (Cntz‘𝐻) | |
3 | 1, 2 | cntzmhm 19381 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍‘𝑇)) → (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
4 | 3 | ralrimiva 3146 | . . 3 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
5 | ssralv 4067 | . . 3 ⊢ (𝑆 ⊆ (𝑍‘𝑇) → (∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
6 | 4, 5 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
7 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
8 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
9 | 7, 8 | mhmf 18824 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
11 | 10 | ffund 6748 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → Fun 𝐹) |
12 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (𝑍‘𝑇)) | |
13 | 7, 1 | cntzssv 19368 | . . . . 5 ⊢ (𝑍‘𝑇) ⊆ (Base‘𝐺) |
14 | 12, 13 | sstrdi 4011 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (Base‘𝐺)) |
15 | 10 | fdmd 6754 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → dom 𝐹 = (Base‘𝐺)) |
16 | 14, 15 | sseqtrrd 4040 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ dom 𝐹) |
17 | funimass4 6980 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
18 | 11, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) |
19 | 6, 18 | mpbird 257 | 1 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3966 dom cdm 5693 “ cima 5696 Fun wfun 6563 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 MndHom cmhm 18816 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-map 8876 df-mhm 18818 df-cntz 19357 |
This theorem is referenced by: gsumzmhm 19979 gsumzinv 19987 |
Copyright terms: Public domain | W3C validator |