MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzmhm2 Structured version   Visualization version   GIF version

Theorem cntzmhm2 18946
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
cntzmhm.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
cntzmhm2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))

Proof of Theorem cntzmhm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzmhm.z . . . . 5 𝑍 = (Cntz‘𝐺)
2 cntzmhm.y . . . . 5 𝑌 = (Cntz‘𝐻)
31, 2cntzmhm 18945 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍𝑇)) → (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
43ralrimiva 3103 . . 3 (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍𝑇)(𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
5 ssralv 3987 . . 3 (𝑆 ⊆ (𝑍𝑇) → (∀𝑥 ∈ (𝑍𝑇)(𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)) → ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
64, 5mpan9 507 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇)))
7 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2738 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
97, 8mhmf 18435 . . . . 5 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
109adantr 481 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
1110ffund 6604 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → Fun 𝐹)
12 simpr 485 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ (𝑍𝑇))
137, 1cntzssv 18934 . . . . 5 (𝑍𝑇) ⊆ (Base‘𝐺)
1412, 13sstrdi 3933 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ (Base‘𝐺))
1510fdmd 6611 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → dom 𝐹 = (Base‘𝐺))
1614, 15sseqtrrd 3962 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → 𝑆 ⊆ dom 𝐹)
17 funimass4 6834 . . 3 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → ((𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)) ↔ ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
1811, 16, 17syl2anc 584 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → ((𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)) ↔ ∀𝑥𝑆 (𝐹𝑥) ∈ (𝑌‘(𝐹𝑇))))
196, 18mpbird 256 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  dom cdm 5589  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912   MndHom cmhm 18428  Cntzccntz 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-mhm 18430  df-cntz 18923
This theorem is referenced by:  gsumzmhm  19538  gsumzinv  19546
  Copyright terms: Public domain W3C validator