![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzmhm2 | Structured version Visualization version GIF version |
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzmhm.y | ⊢ 𝑌 = (Cntz‘𝐻) |
Ref | Expression |
---|---|
cntzmhm2 | ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzmhm.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
2 | cntzmhm.y | . . . . 5 ⊢ 𝑌 = (Cntz‘𝐻) | |
3 | 1, 2 | cntzmhm 19169 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍‘𝑇)) → (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
4 | 3 | ralrimiva 3145 | . . 3 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
5 | ssralv 4046 | . . 3 ⊢ (𝑆 ⊆ (𝑍‘𝑇) → (∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
6 | 4, 5 | mpan9 507 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
7 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
9 | 7, 8 | mhmf 18653 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
11 | 10 | ffund 6708 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → Fun 𝐹) |
12 | simpr 485 | . . . . 5 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (𝑍‘𝑇)) | |
13 | 7, 1 | cntzssv 19158 | . . . . 5 ⊢ (𝑍‘𝑇) ⊆ (Base‘𝐺) |
14 | 12, 13 | sstrdi 3990 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (Base‘𝐺)) |
15 | 10 | fdmd 6715 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → dom 𝐹 = (Base‘𝐺)) |
16 | 14, 15 | sseqtrrd 4019 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ dom 𝐹) |
17 | funimass4 6943 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
18 | 11, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) |
19 | 6, 18 | mpbird 256 | 1 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ⊆ wss 3944 dom cdm 5669 “ cima 5672 Fun wfun 6526 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 MndHom cmhm 18645 Cntzccntz 19145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-map 8805 df-mhm 18647 df-cntz 19147 |
This theorem is referenced by: gsumzmhm 19764 gsumzinv 19772 |
Copyright terms: Public domain | W3C validator |