| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzmhm2 | Structured version Visualization version GIF version | ||
| Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzmhm.y | ⊢ 𝑌 = (Cntz‘𝐻) |
| Ref | Expression |
|---|---|
| cntzmhm2 | ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 2 | cntzmhm.y | . . . . 5 ⊢ 𝑌 = (Cntz‘𝐻) | |
| 3 | 1, 2 | cntzmhm 19279 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (𝑍‘𝑇)) → (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
| 4 | 3 | ralrimiva 3126 | . . 3 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → ∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
| 5 | ssralv 4017 | . . 3 ⊢ (𝑆 ⊆ (𝑍‘𝑇) → (∀𝑥 ∈ (𝑍‘𝑇)(𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
| 6 | 4, 5 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇))) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 8 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 9 | 7, 8 | mhmf 18722 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 11 | 10 | ffund 6694 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → Fun 𝐹) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (𝑍‘𝑇)) | |
| 13 | 7, 1 | cntzssv 19266 | . . . . 5 ⊢ (𝑍‘𝑇) ⊆ (Base‘𝐺) |
| 14 | 12, 13 | sstrdi 3961 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ (Base‘𝐺)) |
| 15 | 10 | fdmd 6700 | . . . 4 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → dom 𝐹 = (Base‘𝐺)) |
| 16 | 14, 15 | sseqtrrd 3986 | . . 3 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → 𝑆 ⊆ dom 𝐹) |
| 17 | funimass4 6927 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) | |
| 18 | 11, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → ((𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇)) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) ∈ (𝑌‘(𝐹 “ 𝑇)))) |
| 19 | 6, 18 | mpbird 257 | 1 ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 dom cdm 5640 “ cima 5643 Fun wfun 6507 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 MndHom cmhm 18714 Cntzccntz 19253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-mhm 18716 df-cntz 19255 |
| This theorem is referenced by: gsumzmhm 19873 gsumzinv 19881 |
| Copyright terms: Public domain | W3C validator |