Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfullsubc Structured version   Visualization version   GIF version

Theorem idfullsubc 49048
Description: The source category of an inclusion functor is a full subcategory of the target category if the inclusion functor is full. Remark 4.4(2) in [Adamek] p. 49. See also ressffth 17951. (Contributed by Zhi Wang, 11-Nov-2025.)
Hypotheses
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
idsubc.h 𝐻 = (Homf𝐷)
idfullsubc.j 𝐽 = (Homf𝐸)
idfullsubc.b 𝐵 = (Base‘𝐷)
idfullsubc.c 𝐶 = (Base‘𝐸)
Assertion
Ref Expression
idfullsubc (𝐼 ∈ (𝐷 Full 𝐸) → (𝐵𝐶 ∧ (𝐽 ↾ (𝐵 × 𝐵)) = 𝐻))

Proof of Theorem idfullsubc
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfullsubc.b . . . 4 𝐵 = (Base‘𝐷)
2 idfth.i . . . . 5 𝐼 = (idfunc𝐶)
3 fullfunc 17919 . . . . . 6 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
43sseli 3954 . . . . 5 (𝐼 ∈ (𝐷 Full 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸))
52, 4imaidfu2lem 49016 . . . 4 (𝐼 ∈ (𝐷 Full 𝐸) → ((1st𝐼) “ (Base‘𝐷)) = (Base‘𝐷))
61, 5eqtr4id 2789 . . 3 (𝐼 ∈ (𝐷 Full 𝐸) → 𝐵 = ((1st𝐼) “ (Base‘𝐷)))
7 eqid 2735 . . . . 5 ((1st𝐼) “ (Base‘𝐷)) = ((1st𝐼) “ (Base‘𝐷))
8 eqid 2735 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2735 . . . . 5 (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝)))
10 relfull 17921 . . . . . 6 Rel (𝐷 Full 𝐸)
11 1st2ndbr 8039 . . . . . 6 ((Rel (𝐷 Full 𝐸) ∧ 𝐼 ∈ (𝐷 Full 𝐸)) → (1st𝐼)(𝐷 Full 𝐸)(2nd𝐼))
1210, 11mpan 690 . . . . 5 (𝐼 ∈ (𝐷 Full 𝐸) → (1st𝐼)(𝐷 Full 𝐸)(2nd𝐼))
13 idfullsubc.c . . . . 5 𝐶 = (Base‘𝐸)
14 idfullsubc.j . . . . 5 𝐽 = (Homf𝐸)
157, 8, 9, 12, 13, 14imasubc 49039 . . . 4 (𝐼 ∈ (𝐷 Full 𝐸) → ((𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) Fn (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷))) ∧ ((1st𝐼) “ (Base‘𝐷)) ⊆ 𝐶 ∧ (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝)))))
1615simp2d 1143 . . 3 (𝐼 ∈ (𝐷 Full 𝐸) → ((1st𝐼) “ (Base‘𝐷)) ⊆ 𝐶)
176, 16eqsstrd 3993 . 2 (𝐼 ∈ (𝐷 Full 𝐸) → 𝐵𝐶)
1815simp3d 1144 . . 3 (𝐼 ∈ (𝐷 Full 𝐸) → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))))
196sqxpeqd 5686 . . . 4 (𝐼 ∈ (𝐷 Full 𝐸) → (𝐵 × 𝐵) = (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷))))
2019reseq2d 5966 . . 3 (𝐼 ∈ (𝐷 Full 𝐸) → (𝐽 ↾ (𝐵 × 𝐵)) = (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))))
21 idsubc.h . . . 4 𝐻 = (Homf𝐷)
222, 4, 8, 21, 9, 5imaidfu2 49018 . . 3 (𝐼 ∈ (𝐷 Full 𝐸) → 𝐻 = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))))
2318, 20, 223eqtr4d 2780 . 2 (𝐼 ∈ (𝐷 Full 𝐸) → (𝐽 ↾ (𝐵 × 𝐵)) = 𝐻)
2417, 23jca 511 1 (𝐼 ∈ (𝐷 Full 𝐸) → (𝐵𝐶 ∧ (𝐽 ↾ (𝐵 × 𝐵)) = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  {csn 4601   ciun 4967   class class class wbr 5119   × cxp 5652  ccnv 5653  cres 5656  cima 5657  Rel wrel 5659   Fn wfn 6525  cfv 6530  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  Basecbs 17226  Hom chom 17280  Homf chomf 17676   Func cfunc 17865  idfunccidfu 17866   Full cful 17915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-ixp 8910  df-cat 17678  df-cid 17679  df-homf 17680  df-func 17869  df-idfu 17870  df-full 17917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator