| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofcutrtime2d | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a timely cut of 𝐴 and 𝐵, then ( R ‘𝑋) is coinitial with 𝐵. (Contributed by Scott Fenton, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| cofcutrtimed.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) |
| cofcutrtimed.2 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cofcutrtimed.3 | ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) |
| Ref | Expression |
|---|---|
| cofcutrtime2d | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcutrtimed.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) | |
| 2 | cofcutrtimed.2 | . . 3 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 3 | cofcutrtimed.3 | . . 3 ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) | |
| 4 | cofcutrtime 27835 | . . 3 ⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋)) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∀wral 3044 ∃wrex 3053 ∪ cun 3912 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 bday cbday 27553 ≤s csle 27656 <<s csslt 27692 |s cscut 27694 O cold 27751 L cleft 27753 R cright 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 df-left 27758 df-right 27759 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |