![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2nn0 | Structured version Visualization version GIF version |
Description: A digit of a nonnegative integer 𝑁 in a binary system is either 0 or 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig2nn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11425 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 2 ∈ ℕ) |
3 | simpr 479 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
4 | nn0rp0 12570 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
5 | 4 | adantr 474 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ (0[,)+∞)) |
6 | digval 43240 | . . 3 ⊢ ((2 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘((2↑-𝐾) · 𝑁)) mod 2)) | |
7 | 2, 3, 5, 6 | syl3anc 1496 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) = ((⌊‘((2↑-𝐾) · 𝑁)) mod 2)) |
8 | 2re 11426 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 2 ∈ ℝ) |
10 | 2ne0 11463 | . . . . . . 7 ⊢ 2 ≠ 0 | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 2 ≠ 0) |
12 | znegcl 11741 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
13 | 12 | adantl 475 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ) |
14 | 9, 11, 13 | reexpclzd 13331 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (2↑-𝐾) ∈ ℝ) |
15 | nn0re 11629 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
16 | 15 | adantr 474 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ) |
17 | 14, 16 | remulcld 10388 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((2↑-𝐾) · 𝑁) ∈ ℝ) |
18 | 17 | flcld 12895 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (⌊‘((2↑-𝐾) · 𝑁)) ∈ ℤ) |
19 | elmod2 42229 | . . 3 ⊢ ((⌊‘((2↑-𝐾) · 𝑁)) ∈ ℤ → ((⌊‘((2↑-𝐾) · 𝑁)) mod 2) ∈ {0, 1}) | |
20 | 18, 19 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((⌊‘((2↑-𝐾) · 𝑁)) mod 2) ∈ {0, 1}) |
21 | 7, 20 | eqeltrd 2907 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 {cpr 4400 ‘cfv 6124 (class class class)co 6906 ℝcr 10252 0cc0 10253 1c1 10254 · cmul 10258 +∞cpnf 10389 -cneg 10587 ℕcn 11351 2c2 11407 ℕ0cn0 11619 ℤcz 11705 [,)cico 12466 ⌊cfl 12887 mod cmo 12964 ↑cexp 13155 digitcdig 43237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-sup 8618 df-inf 8619 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-ico 12470 df-fz 12621 df-fzo 12762 df-fl 12889 df-mod 12965 df-seq 13097 df-exp 13156 df-dig 43238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |