Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2nn0 | Structured version Visualization version GIF version |
Description: A digit of a nonnegative integer 𝑁 in a binary system is either 0 or 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig2nn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12046 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 2 ∈ ℕ) |
3 | simpr 485 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
4 | nn0rp0 13186 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ (0[,)+∞)) |
6 | digval 45913 | . . 3 ⊢ ((2 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘((2↑-𝐾) · 𝑁)) mod 2)) | |
7 | 2, 3, 5, 6 | syl3anc 1370 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) = ((⌊‘((2↑-𝐾) · 𝑁)) mod 2)) |
8 | 2re 12047 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 2 ∈ ℝ) |
10 | 2ne0 12077 | . . . . . . 7 ⊢ 2 ≠ 0 | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 2 ≠ 0) |
12 | znegcl 12355 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ) |
14 | 9, 11, 13 | reexpclzd 13962 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (2↑-𝐾) ∈ ℝ) |
15 | nn0re 12242 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
16 | 15 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ) |
17 | 14, 16 | remulcld 11006 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((2↑-𝐾) · 𝑁) ∈ ℝ) |
18 | 17 | flcld 13516 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (⌊‘((2↑-𝐾) · 𝑁)) ∈ ℤ) |
19 | elmod2 44791 | . . 3 ⊢ ((⌊‘((2↑-𝐾) · 𝑁)) ∈ ℤ → ((⌊‘((2↑-𝐾) · 𝑁)) mod 2) ∈ {0, 1}) | |
20 | 18, 19 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((⌊‘((2↑-𝐾) · 𝑁)) mod 2) ∈ {0, 1}) |
21 | 7, 20 | eqeltrd 2841 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 {cpr 4569 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 · cmul 10877 +∞cpnf 11007 -cneg 11206 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤcz 12319 [,)cico 13080 ⌊cfl 13508 mod cmo 13587 ↑cexp 13780 digitcdig 45910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-ico 13084 df-fz 13239 df-fzo 13382 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-dig 45911 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |