![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > digvalnn0 | Structured version Visualization version GIF version |
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵 is a nonnegative integer. (Contributed by AV, 28-May-2020.) |
Ref | Expression |
---|---|
digvalnn0 | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | digval 47185 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | |
2 | nnre 12214 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
3 | 2 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ) |
4 | nnne0 12241 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
5 | 4 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0) |
6 | znegcl 12592 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
7 | 6 | 3ad2ant2 1135 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → -𝐾 ∈ ℤ) |
8 | 3, 5, 7 | reexpclzd 14207 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) ∈ ℝ) |
9 | elrege0 13426 | . . . . . . 7 ⊢ (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
10 | 9 | simplbi 499 | . . . . . 6 ⊢ (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℝ) |
11 | 10 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℝ) |
12 | 8, 11 | remulcld 11239 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) ∈ ℝ) |
13 | 12 | flcld 13758 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) ∈ ℤ) |
14 | simp1 1137 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℕ) | |
15 | 13, 14 | zmodcld 13852 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) ∈ ℕ0) |
16 | 1, 15 | eqeltrd 2834 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5146 ‘cfv 6539 (class class class)co 7403 ℝcr 11104 0cc0 11105 · cmul 11110 +∞cpnf 11240 ≤ cle 11244 -cneg 11440 ℕcn 12207 ℕ0cn0 12467 ℤcz 12553 [,)cico 13321 ⌊cfl 13750 mod cmo 13829 ↑cexp 14022 digitcdig 47182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-sup 9432 df-inf 9433 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-n0 12468 df-z 12554 df-uz 12818 df-rp 12970 df-ico 13325 df-fl 13752 df-mod 13830 df-seq 13962 df-exp 14023 df-dig 47183 |
This theorem is referenced by: nn0sumshdiglemA 47206 nn0sumshdiglemB 47207 nn0sumshdiglem2 47209 nn0mullong 47212 |
Copyright terms: Public domain | W3C validator |