Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0digval Structured version   Visualization version   GIF version

Theorem nn0digval 48631
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
nn0digval ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))

Proof of Theorem nn0digval
StepHypRef Expression
1 nn0z 12490 . . 3 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
2 digval 48629 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
31, 2syl3an2 1164 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
4 nncn 12130 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54anim1i 615 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
6 expneg 13973 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
75, 6syl 17 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
873adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
98oveq1d 7361 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵𝐾)) · 𝑅))
10 elrege0 13351 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
11 recn 11093 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
1211adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ)
1310, 12sylbi 217 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ)
14133ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ)
1553adant3 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
16 expcl 13983 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1715, 16syl 17 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ∈ ℂ)
1843ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
19 nnne0 12156 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
20193ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0)
2113ad2ant2 1134 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ)
2218, 20, 21expne0d 14056 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ≠ 0)
2314, 17, 22divrec2d 11898 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵𝐾)) = ((1 / (𝐵𝐾)) · 𝑅))
249, 23eqtr4d 2769 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵𝐾)))
2524fveq2d 6826 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵𝐾))))
2625oveq1d 7361 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
273, 26eqtrd 2766 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   · cmul 11008  +∞cpnf 11140  cle 11144  -cneg 11342   / cdiv 11771  cn 12122  0cn0 12378  cz 12465  [,)cico 13244  cfl 13691   mod cmo 13770  cexp 13965  digitcdig 48626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-ico 13248  df-seq 13906  df-exp 13966  df-dig 48627
This theorem is referenced by:  dignnld  48634  dig2nn1st  48636  digexp  48638  0dig2nn0e  48643  0dig2nn0o  48644  dig2bits  48645  dignn0ehalf  48648  dignn0flhalf  48649
  Copyright terms: Public domain W3C validator