Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0digval | Structured version Visualization version GIF version |
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
Ref | Expression |
---|---|
nn0digval | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12200 | . . 3 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
2 | digval 45617 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | |
3 | 1, 2 | syl3an2 1166 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
4 | nncn 11838 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
5 | 4 | anim1i 618 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0)) |
6 | expneg 13643 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) |
8 | 7 | 3adant3 1134 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) |
9 | 8 | oveq1d 7228 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵↑𝐾)) · 𝑅)) |
10 | elrege0 13042 | . . . . . . . 8 ⊢ (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
11 | recn 10819 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℂ) | |
12 | 11 | adantr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ) |
13 | 10, 12 | sylbi 220 | . . . . . . 7 ⊢ (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ) |
14 | 13 | 3ad2ant3 1137 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ) |
15 | 5 | 3adant3 1134 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0)) |
16 | expcl 13653 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑𝐾) ∈ ℂ) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑𝐾) ∈ ℂ) |
18 | 4 | 3ad2ant1 1135 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ) |
19 | nnne0 11864 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
20 | 19 | 3ad2ant1 1135 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0) |
21 | 1 | 3ad2ant2 1136 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ) |
22 | 18, 20, 21 | expne0d 13722 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑𝐾) ≠ 0) |
23 | 14, 17, 22 | divrec2d 11612 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵↑𝐾)) = ((1 / (𝐵↑𝐾)) · 𝑅)) |
24 | 9, 23 | eqtr4d 2780 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵↑𝐾))) |
25 | 24 | fveq2d 6721 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵↑𝐾)))) |
26 | 25 | oveq1d 7228 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
27 | 3, 26 | eqtrd 2777 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 · cmul 10734 +∞cpnf 10864 ≤ cle 10868 -cneg 11063 / cdiv 11489 ℕcn 11830 ℕ0cn0 12090 ℤcz 12176 [,)cico 12937 ⌊cfl 13365 mod cmo 13442 ↑cexp 13635 digitcdig 45614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-ico 12941 df-seq 13575 df-exp 13636 df-dig 45615 |
This theorem is referenced by: dignnld 45622 dig2nn1st 45624 digexp 45626 0dig2nn0e 45631 0dig2nn0o 45632 dig2bits 45633 dignn0ehalf 45636 dignn0flhalf 45637 |
Copyright terms: Public domain | W3C validator |