Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0digval Structured version   Visualization version   GIF version

Theorem nn0digval 48593
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
nn0digval ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))

Proof of Theorem nn0digval
StepHypRef Expression
1 nn0z 12561 . . 3 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
2 digval 48591 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
31, 2syl3an2 1164 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
4 nncn 12201 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54anim1i 615 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
6 expneg 14041 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
75, 6syl 17 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
873adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
98oveq1d 7405 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵𝐾)) · 𝑅))
10 elrege0 13422 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
11 recn 11165 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
1211adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ)
1310, 12sylbi 217 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ)
14133ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ)
1553adant3 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
16 expcl 14051 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1715, 16syl 17 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ∈ ℂ)
1843ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
19 nnne0 12227 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
20193ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0)
2113ad2ant2 1134 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ)
2218, 20, 21expne0d 14124 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ≠ 0)
2314, 17, 22divrec2d 11969 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵𝐾)) = ((1 / (𝐵𝐾)) · 𝑅))
249, 23eqtr4d 2768 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵𝐾)))
2524fveq2d 6865 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵𝐾))))
2625oveq1d 7405 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
273, 26eqtrd 2765 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  +∞cpnf 11212  cle 11216  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  [,)cico 13315  cfl 13759   mod cmo 13838  cexp 14033  digitcdig 48588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-ico 13319  df-seq 13974  df-exp 14034  df-dig 48589
This theorem is referenced by:  dignnld  48596  dig2nn1st  48598  digexp  48600  0dig2nn0e  48605  0dig2nn0o  48606  dig2bits  48607  dignn0ehalf  48610  dignn0flhalf  48611
  Copyright terms: Public domain W3C validator