Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0digval Structured version   Visualization version   GIF version

Theorem nn0digval 48725
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
nn0digval ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))

Proof of Theorem nn0digval
StepHypRef Expression
1 nn0z 12499 . . 3 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
2 digval 48723 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
31, 2syl3an2 1164 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
4 nncn 12140 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54anim1i 615 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
6 expneg 13978 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
75, 6syl 17 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
873adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
98oveq1d 7367 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵𝐾)) · 𝑅))
10 elrege0 13356 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
11 recn 11103 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
1211adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ)
1310, 12sylbi 217 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ)
14133ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ)
1553adant3 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
16 expcl 13988 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1715, 16syl 17 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ∈ ℂ)
1843ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
19 nnne0 12166 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
20193ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0)
2113ad2ant2 1134 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ)
2218, 20, 21expne0d 14061 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ≠ 0)
2314, 17, 22divrec2d 11908 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵𝐾)) = ((1 / (𝐵𝐾)) · 𝑅))
249, 23eqtr4d 2771 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵𝐾)))
2524fveq2d 6832 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵𝐾))))
2625oveq1d 7367 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
273, 26eqtrd 2768 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   · cmul 11018  +∞cpnf 11150  cle 11154  -cneg 11352   / cdiv 11781  cn 12132  0cn0 12388  cz 12475  [,)cico 13249  cfl 13696   mod cmo 13775  cexp 13970  digitcdig 48720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-ico 13253  df-seq 13911  df-exp 13971  df-dig 48721
This theorem is referenced by:  dignnld  48728  dig2nn1st  48730  digexp  48732  0dig2nn0e  48737  0dig2nn0o  48738  dig2bits  48739  dignn0ehalf  48742  dignn0flhalf  48743
  Copyright terms: Public domain W3C validator