| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0digval | Structured version Visualization version GIF version | ||
| Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
| Ref | Expression |
|---|---|
| nn0digval | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 12561 | . . 3 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 2 | digval 48591 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | |
| 3 | 1, 2 | syl3an2 1164 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| 4 | nncn 12201 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
| 5 | 4 | anim1i 615 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0)) |
| 6 | expneg 14041 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) |
| 8 | 7 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) |
| 9 | 8 | oveq1d 7405 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵↑𝐾)) · 𝑅)) |
| 10 | elrege0 13422 | . . . . . . . 8 ⊢ (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
| 11 | recn 11165 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℂ) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ) |
| 13 | 10, 12 | sylbi 217 | . . . . . . 7 ⊢ (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ) |
| 14 | 13 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ) |
| 15 | 5 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0)) |
| 16 | expcl 14051 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑𝐾) ∈ ℂ) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑𝐾) ∈ ℂ) |
| 18 | 4 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ) |
| 19 | nnne0 12227 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
| 20 | 19 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0) |
| 21 | 1 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ) |
| 22 | 18, 20, 21 | expne0d 14124 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑𝐾) ≠ 0) |
| 23 | 14, 17, 22 | divrec2d 11969 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵↑𝐾)) = ((1 / (𝐵↑𝐾)) · 𝑅)) |
| 24 | 9, 23 | eqtr4d 2768 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵↑𝐾))) |
| 25 | 24 | fveq2d 6865 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵↑𝐾)))) |
| 26 | 25 | oveq1d 7405 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
| 27 | 3, 26 | eqtrd 2765 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 +∞cpnf 11212 ≤ cle 11216 -cneg 11413 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 [,)cico 13315 ⌊cfl 13759 mod cmo 13838 ↑cexp 14033 digitcdig 48588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-ico 13319 df-seq 13974 df-exp 14034 df-dig 48589 |
| This theorem is referenced by: dignnld 48596 dig2nn1st 48598 digexp 48600 0dig2nn0e 48605 0dig2nn0o 48606 dig2bits 48607 dignn0ehalf 48610 dignn0flhalf 48611 |
| Copyright terms: Public domain | W3C validator |