Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0digval | Structured version Visualization version GIF version |
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
Ref | Expression |
---|---|
nn0digval | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12436 | . . 3 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
2 | digval 46284 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | |
3 | 1, 2 | syl3an2 1163 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
4 | nncn 12074 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
5 | 4 | anim1i 615 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0)) |
6 | expneg 13883 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) |
8 | 7 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵↑𝐾))) |
9 | 8 | oveq1d 7344 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵↑𝐾)) · 𝑅)) |
10 | elrege0 13279 | . . . . . . . 8 ⊢ (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
11 | recn 11054 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℂ) | |
12 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ) |
13 | 10, 12 | sylbi 216 | . . . . . . 7 ⊢ (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ) |
14 | 13 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ) |
15 | 5 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0)) |
16 | expcl 13893 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑𝐾) ∈ ℂ) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑𝐾) ∈ ℂ) |
18 | 4 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ) |
19 | nnne0 12100 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
20 | 19 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0) |
21 | 1 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ) |
22 | 18, 20, 21 | expne0d 13963 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐵↑𝐾) ≠ 0) |
23 | 14, 17, 22 | divrec2d 11848 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵↑𝐾)) = ((1 / (𝐵↑𝐾)) · 𝑅)) |
24 | 9, 23 | eqtr4d 2779 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵↑𝐾))) |
25 | 24 | fveq2d 6823 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵↑𝐾)))) |
26 | 25 | oveq1d 7344 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
27 | 3, 26 | eqtrd 2776 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 ℝcr 10963 0cc0 10964 1c1 10965 · cmul 10969 +∞cpnf 11099 ≤ cle 11103 -cneg 11299 / cdiv 11725 ℕcn 12066 ℕ0cn0 12326 ℤcz 12412 [,)cico 13174 ⌊cfl 13603 mod cmo 13682 ↑cexp 13875 digitcdig 46281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-ico 13178 df-seq 13815 df-exp 13876 df-dig 46282 |
This theorem is referenced by: dignnld 46289 dig2nn1st 46291 digexp 46293 0dig2nn0e 46298 0dig2nn0o 46299 dig2bits 46300 dignn0ehalf 46303 dignn0flhalf 46304 |
Copyright terms: Public domain | W3C validator |